Patents Assigned to Firestar Engineering, LLC
  • Publication number: 20140318367
    Abstract: A cylinder has an insulating gas boundary layer (IGBL) across the cylinder wall inner surface, the IGBL formed by injection of an insulator fluid into the combustion chamber of the cylinder. In one implementation, a pressure differential is engineered between the top region of the cylinder and the bottom region of the cylinder. In yet another implementation, the insulator injection pressure is temporally modified in synchronicity with the piston cycle and/or in accordance with other temporal factors to provide appropriate IGBL coverage.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 30, 2014
    Applicant: Firestar Engineering, LLC
    Inventor: Gregory S. Mungas
  • Patent number: 8858224
    Abstract: An apparatus and system disclosed herein provides detonation wave arrestor including a detonation wave deflector and a burst element. The detonation wave arrestor disclosed herein attenuates and defects the propagation of a detonation wave characterized by a supersonic flame front propagation. The detonation wave arrestor provides deflection of detonation wave towards the burst element. The rupture of the burst element provides venting of hot gases remaining from the detonation, thus providing separation and attenuation of combusted gas residuals. The detonation wave arrestor disclosed herein may be used in a combustible fuel delivery system.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: October 14, 2014
    Assignee: Firestar Engineering, LLC
    Inventors: Gregory S. Mungas, David J. Fisher
  • Patent number: 8572946
    Abstract: Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: November 5, 2013
    Assignee: Firestar Engineering, LLC
    Inventors: Gregory S. Mungas, David J. Fisher, Christopher Mungas
  • Publication number: 20130276426
    Abstract: The fluids and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is useful for calculating temperature distributions in a coolant fluid and combustion chamber or heat source as well as the associated fluid pressure drop through the coolant jacket. This model for fluids and heat transfer theory can be used to design a regeneratively cooled rocket engine.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 24, 2013
    Applicant: Firestar Engineering, LLC
    Inventor: Firestar Engineering, LLC
  • Patent number: 8413419
    Abstract: The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: April 9, 2013
    Assignee: Firestar Engineering, LLC
    Inventors: Greg Mungas, David J. Fisher, Adam Pollok London, Jack Merrill Fryer
  • Publication number: 20120279197
    Abstract: Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 8, 2012
    Applicant: Firestar Engineering, LLC
    Inventors: Gregory S. Mungas, David J. Fisher, Christopher Mungas
  • Patent number: 8230672
    Abstract: High performance propellants flow through specialized mechanical hardware that allows for effective and safe thermal decomposition and/or combustion of the propellants. By integrating a sintered metal component between a propellant feed source and the combustion chamber, an effective and reliable fuel injector head may be implemented. Additionally the fuel injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: July 31, 2012
    Assignee: Firestar Engineering, LLC
    Inventors: Gregory Stuart Mungas, David James Fisher, Christopher Mungas
  • Patent number: 8230673
    Abstract: Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: July 31, 2012
    Assignee: Firestar Engineering, LLC
    Inventors: Gregory S. Mungas, David J. Fisher, Christopher Mungas
  • Publication number: 20110219742
    Abstract: A supersonic combustor as a component of a rocket nozzle offers improved utilization of available chemical energy that may be released from combustion gasses flowing through the rocket nozzle. A subsonic combustor sub-sonically accelerates an exothermically reacting combustion gas up to a nozzle throat. The supersonic combustor expands and super-sonically accelerates the exothermically reacting combustion gas beyond the nozzle throat. The dimensions of the supersonic combustor may be selected such that the supersonic combustor achieves a slow rate of cooling of the combustion gasses without creating shockwaves within the supersonic combustor. A supersonic discharge expands and super-sonically accelerates the now substantially non-reacting combustion gas through a supersonic discharge of the rocket nozzle. The momentum of the combustion gas leaving the supersonic discharge propels the rocket nozzle in the opposite direction due to the principle of conservation of momentum.
    Type: Application
    Filed: March 14, 2011
    Publication date: September 15, 2011
    Applicant: Firestar Engineering, LLC
    Inventor: Gregory S. Mungas
  • Publication number: 20110180032
    Abstract: An insulative piston or piston cap creates a highly thermally resistive path in the axial direction of the piston or piston cap toward a crank case of an engine. An insulative cylinder is configured to be positioned around the insulative piston and adjacent an insulative cylinder head, and to provide thermal resistance in the cylinder's axial direction. The insulated cylinder head is configured to resist heat flow in the axial direction away from the crank case. High temperature insulation surrounding these structures is configured to resist heat flow out of a combustion chamber of the engine. These insulative components, together, form the fully insulated combustion chamber.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 28, 2011
    Applicant: Firestar Engineering, LLC
    Inventors: Gregory S. Mungas, Gregory H. Peters, Kenneth Doyle, Larry R. Buchanan, Jose T. Banzon, JR.
  • Publication number: 20110005195
    Abstract: Disclosed are materials of variable density or tiered porosity micro-fluidic porous media structures of sintered metal or other materials, and methods of making same. An embodiment discloses an aluminum porous media element of variable density having a tiered porosity micro-fluidic media structure. A method of making the aluminum porous media element disclosed herein includes mixing a binding agent with a metal powder to generate a first mixture, heating the first mixture to a sub metal sintering temperature to get a homogeneous composite of the metal powder and heating the homogeneous composite to a metal sintering temperature to sinter-bond the metal powder to get a porous media of first porosity.
    Type: Application
    Filed: July 7, 2010
    Publication date: January 13, 2011
    Applicant: Firestar Engineering, LLC
    Inventors: Gregory S. Mungas, Gregory H. Peters, Jon Anthony Smith
  • Publication number: 20110005194
    Abstract: A flashback-arresting shut-off valve is disclosed herein. Propellant is moved from a propellant reservoir, through the shut-off valve in an open configuration to a point of combustion in a normal propellant flow direction. During a flashback, the propellant is ignited within the propellant line and substantial physical/thermal energy caused by the flashback travels in the direction opposite to the normal propellant flow direction back to the shut-off valve. A burst member within the shut-off valve fails because of the flashback. Failure of the burst member causes compression on a spring-loaded portion of the shut-off valve to be released, thereby closing the shut-off valve and sealing the propellant reservoir from the flashback. Failure of the burst member also causes one or more pressure relief outlets to open that direct the physical/thermal energy and/or un-combusted/combusted propellant out and away from the shut-off valve.
    Type: Application
    Filed: July 7, 2010
    Publication date: January 13, 2011
    Applicant: Firestar Engineering, LLC
    Inventors: Kenneth Doyle, Gregory S. Mungas, David J. Fisher
  • Publication number: 20110008739
    Abstract: An apparatus and system disclosed herein provides detonation wave arrestor including a detonation wave deflector and a burst element. The detonation wave arrestor disclosed herein attenuates and defects the propagation of a detonation wave characterized by a supersonic flame front propagation. The detonation wave arrestor provides deflection of detonation wave towards the burst element. The rupture of the burst element provides venting of hot gases remaining from the detonation, thus providing separation and attenuation of combusted gas residuals. The detonation wave arrestor disclosed herein may be used in a combustible fuel delivery system.
    Type: Application
    Filed: July 7, 2010
    Publication date: January 13, 2011
    Applicant: Firestar Engineering, LLC
    Inventors: Gregory S. Mungas, David J. Fisher
  • Publication number: 20090133788
    Abstract: Compositions and methods herein provide monopropellants comprising nitrous oxide mixed with organic fuels in particular proportions creating stable, storable, monopropellants which demonstrate high ISP performance. Due to physical properties of the nitrous molecule, fuel/nitrous blends demonstrate high degrees of miscibility as well as excellent chemical stability. While the monopropellants are particularly well suited for use as propulsion propellants, they also lend themselves well to power generation in demanding situations where some specific cycle creates useable work and for providing gas pressure and/or heat for inflating deployable materials.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 28, 2009
    Applicant: Firestar Engineering, LLC
    Inventors: Gregory Mungas, David J. Fisher, Christopher Mungas, Benjamin Carryer