Abstract: A bayonet coupling system includes a bayonet, a bayonet coupler, and a seal. The bayonet includes a bayonet tube configured to enable the flow of hydrogen fuel therethrough, and a flange coupled to the bayonet tube. The seal is configured to surround the bayonet tube and contact the flange along one side of the flange. The bayonet coupler includes a bayonet coupler tube having an inside diameter larger than an outside diameter of the bayonet tube, the bayonet coupler tube configured to receive the bayonet tube and to seal against the flange at the seal. The bayonet coupler is fixedly mounted directly or indirectly to a hydrogen storage tank such that a longitudinal axis of the bayonet coupler is inclined a predetermined angle with respect to horizontal to prevent a substantial thermal gradient from forming at the seal.
Abstract: A control conduit for liquid hydrogen offloading is configured to couple a controller of a liquid hydrogen offload system to a liquid hydrogen tanker. The control conduit includes a control line and a gas detector. The control line is configured to transmit a control signal from the controller to the liquid hydrogen tanker. The gas detector is configured to detect hydrogen gas and provide a gas detector signal to the controller. The gas detector is secured to the control line at a predetermined distance from a tanker connection end of the control line.
Abstract: A computer-controlled method of automatically purging and precooling a hydrogen fuel line prior to transferring hydrogen fuel from a source to a storage tank includes purging moisture from a hydrogen fuel line. The hydrogen fuel line is configured to fluidically couple a hydrogen tanker storage tank and a fueling station storage tank, the hydrogen storage tanker storage tank and the fueling station storage tank configured to store liquid hydrogen. The method also includes pre-cooling the hydrogen fuel line, causing hydrogen fuel to flow through the hydrogen fuel line to re-fill the fueling station storage tank, and expelling residual hydrogen fuel from the hydrogen fuel line when the fueling station storage tank re-filling is complete.
Abstract: A flow control panel is configured to control a flow of fuel from a storage bank to a dispenser. The flow control panel includes input and output flow controllers, and input and output ports, each output port coupled to a respective dispenser port. Each output flow controller is coupled to a respective input port and a respective output port, and is configured to enable the flow of fuel from the input port and the output port. A processor is configured to control the input flow controllers and the output flow controllers.
Type:
Grant
Filed:
April 22, 2022
Date of Patent:
January 10, 2023
Assignee:
FirstElement Fuel, Inc.
Inventors:
Ghassan Sleiman, Andrew Youlio, Max Eman
Abstract: A flow control panel configured to control the flow of fuel from a storage bank to a dispense includes a cold fuel controller, a dispenser port, and a processor. The cold fuel controller is configured to control the flow of cold fuel from a cold fuel line. The dispenser port is in fluid communication with the cold fuel controller. The processor is configured to receive an indication of fuel temperature within a dispenser and activate the cold fuel controller to allow the cold fuel from the cold fuel line to flow to the dispenser port when the indication of fuel temperature within the dispenser exceeds a maximum temperature determined by the dispenser.
Type:
Grant
Filed:
April 22, 2022
Date of Patent:
November 22, 2022
Assignee:
FirstElement Fuel, Inc.
Inventors:
Ghassan Sleiman, Andrew Youlio, Max Eman