Patents Assigned to FlashSilicon Incorporation
  • Patent number: 11825652
    Abstract: For erasing four-terminal semiconductor Non-Volatile Memory (NVM) devices, we apply a high positive voltage bias to the control gate with source, substrate and drain electrodes tied to the ground voltage for moving out stored charges in the charge storage material to the control gate. For improving erasing efficiency and NVM device endurance life by lowering applied voltage biases and reducing the applied voltage time durations, we engineer the lateral impurity profile of the control gate near dielectric interface such that tunneling occurs on the small lateral region of the control gate near the dielectric interface. We also apply the non-uniform thickness of coupling dielectric between the control gate and the storage material for the NVM device such that the tunneling for the erase operation occurs within the small thin dielectric areas, where the electrical field in thin dielectric is the strongest for tunneling erase operation.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: November 21, 2023
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 11662980
    Abstract: In-memory arithmetic processors for the “n-bit” by “n-bit” multiplication, the “n-bit” by “n-bit” addition, and the “n-bit” by “n-bit” subtraction operations are disclosed. The in-memory arithmetic processors of the invention can obtain the operational resultant integer in the binary format for two inputted integers represented by two “n-bit” binary codes in one-step processing with no sequential multiple-step operations as for the conventional arithmetic binary processors. The in-memory arithmetic processors are implemented by a 2-dimensional memory array with X and Y decoding for the two inputted operational integers in the arithmetic binary operations.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: May 30, 2023
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 11600320
    Abstract: An in-memory digital processor, Perpetual Digital Perceptron (PDP), is disclosed. The digital in-memory processor of the invention processes the input digital information according to a database of the digital content data stored/hardwired in the Content Read Only Memory (CROM) array and outputs the correspondent digital response data stored/hardwired in the Response Read Only Memory (RROM) array. The PDP is the hardwired digital in-memory processor without re-configuration capability and similar to the instinct functions of biological hardwired brains without re-shaping their neuromorphic structures from training and learning.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: March 7, 2023
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 11461074
    Abstract: The multi-digit binary in-memory multiplication devices are disclosed. The multi-digit binary in-memory multiplication devices of the invention can dramatically reduce the operational steps in comparison with the conventional binary multiplier device. In one embodiment with the expense of more hardware, the in-memory multiplication device can achieve one single step operation. Consequently, the multi-digit binary in-memory multiplication device can improve the computation efficiency and save the computation power by eliminating the data transportations between Arithmetic Logic Unit (ALU), registers, and memory units.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: October 4, 2022
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 11200029
    Abstract: The base-2n in-memory adder device mainly comprises Perpetual Digital Perceptron (PDP) in-memory adder with Read Only Memory (ROM) arrays for storing the binary sum codes of the addition table for processing the addition operations of two n-bit binary integer operands. Since the integer numbers can be represented by the binary codes of multiple digits of base-2n integer numbers, the base-2n in-memory adder device can iterate multiple times of the digit-additions to complete the binary code addition for two m-digit base-2n integer operands. Consequently, the base-2n in-memory adder device can improve the computation efficiency and save the computation power by eliminating the data transportations between Arithmetic Logic Unit (ALU), registers, and memory units.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: December 14, 2021
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 11201162
    Abstract: For erasing four-terminal semiconductor Non-Volatile Memory (NVM) devices, we apply a high positive voltage bias to the control gate with source, substrate and drain electrodes tied to the ground voltage for moving out stored charges in the charge storage material to the control gate. For improving erasing efficiency and NVM device endurance life by lowering applied voltage biases and reducing the applied voltage time durations, we engineer the lateral impurity profile of the control gate near dielectric interface such that tunneling occurs on the small lateral region of the control gate near the dielectric interface. We also apply the non-uniform thickness of coupling dielectric between the control gate and the storage material for the NVM device such that the tunneling for the erase operation occurs within the small thin dielectric areas, where the electrical field in thin dielectric is the strongest for tunneling erase operation.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: December 14, 2021
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 11031079
    Abstract: A dynamic digital perceptron device is disclosed. The dynamic digital perceptron device of the invention comprises a volatile content memory array, a detection and driver circuit and a volatile response memory array. The dynamic digital perceptron device processes input digital information according to a database of the digital content data stored in the volatile content memory array and outputs the correspondent digital data stored in the volatile response memory array by the detection and driver circuit. Moreover, the volatile content memory array and the volatile response memory array in the dynamic digital perceptron device are constructed by the latch-types of memory cells to handle the rapid and frequent changing digital processing environments.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: June 8, 2021
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 10431308
    Abstract: Scalable Logic Gate Non-Volatile Memory (LGNVM) NOR-type arrays fabricated by the standard CMOS logic technologies have been applied for the embedded flash solutions in digital circuitries. To significantly reduce the memory array sizes from the previous fabrications, we have applied the topological regularity of memory cells in the arrays and a self-aligned etch process step to eliminate the gate end-caps in the memory areas. Without scarifying the memory array yields, the minimal unit cell size of 12 F2 for the LGNVM NOR flash arrays can be achieved by this method, where F is the minimal feature size for a specific CMOS logic process technology node.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: October 1, 2019
    Assignee: Flashsilicon Incorporation
    Inventor: Lee Wang
  • Patent number: 10148254
    Abstract: The standby leakage current reduction schemes for digital data storing components are disclosed. By floating the low digital voltage node of the digital data storing components in standby mode, the major standby leakage current paths to the ground voltage caused by the channel diffusion leakage current of MOSFET devices can be terminated. The standby leakage currents will be reduced to the small reverse junction leakage currents to the grounded substrate. For retaining the stored data in the digital data storing components in standby mode, the low digital voltage node is connected to the ground voltage periodically according to a plurality of rectangular voltage pulses outputted from a pulse generator trigged by a low frequency clock oscillator. Due to no external voltage bias to the low digital voltage node other than floating the digital low voltage node, the data recovering process is instant.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: December 4, 2018
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 10147492
    Abstract: A non-differential sense amplifier circuit for reading out information in Non-Volatile Memories (NVMs) is disclosed. The circuit comprises a half latch, a PMOSFET device, a switch device and a reset transistor. The PMOSFET device has a source electrode connected to a digital voltage rail, a drain electrode connected to an output node of the half latch and a gate electrode connected to a bitline path coupled with a selected NVM cell. After the bitline path is pre-charged and the reset transistor is turned off, applying a read voltage to a word line related to the selected NVM cell causes a voltage at the gate electrode of the PMOSFET device to drop differently according to an electrical conductance state of the selected NVM cell. The disclosed circuitries can achieve extra low power consumption and high sensing speed compared to those in the conventional sensing scheme.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: December 4, 2018
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 10068772
    Abstract: A recess channel semiconductor non-volatile memory (NVM) device is disclosed. The recess channel MOSFET devices by etching into the silicon substrate for the device channel have been applied to advanced DRAM process nodes. The same etching process of the recess channel MOSFET device is applied to form the recess channel semiconductor NVM device. The tunneling oxides are grown on silicon surface after the recess channel hole etching process. The storing material is deposited into the recess channel holes with coupling dielectrics on top of the storing material. The gate material is then deposited and etched to form the control gate. Owing to the recess channel embedded below the silicon substrate, the scaling challenges such as gate channel length, floating gate interference, high aspect ratio for gate stack etching, and the mechanical stability of gate formation for the semiconductor NVM device can be significantly reduced.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: September 4, 2018
    Assignee: Flashsilicon Incorporation
    Inventor: Lee Wang
  • Patent number: 9779814
    Abstract: Non-Volatile Static Random Access Memory (NVSRAM) cell devices applying only one single non-volatile element embedded in a conventional Static Random Access Memory (SRAM) cell are disclosed. The NVSRAM cell devices can be integrated into a compact cell array. The NVSRAM devices of the invention have a read/write speed of a conventional SRAM and non-volatile property of a non-volatile memory cell. The methods of operations for the NVSRAM devices of the invention are also disclosed.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: October 3, 2017
    Assignee: Flashsilicon Incorporation
    Inventor: Lee Wang
  • Patent number: 9754668
    Abstract: In view of the neural network information parallel processing, a digital perceptron device analogous to the build-in neural network hardware systems for parallel processing digital signals directly by the processor's memory content and memory perception in one feed-forward step is disclosed. The digital perceptron device of the invention applies the configurable content and perceptive non-volatile memory arrays as the memory processor hardware. The input digital signals are then broadcasted into the non-volatile content memory array for a match to output the digital signals from the perceptive non-volatile memory array as the content-perceptive digital perceptron device.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: September 5, 2017
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 9595330
    Abstract: A Configurable Non-Volatile Content Addressable Memory (CNVCAM) cell consisting of a pair of complementary non-volatile memory devices and a MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor) is disclosed. The CNVCAM cells can be constructed to form the NOR-type match line memory array and the NAND-type match line memory array. In contrast to the Random Access Memory (RAM) accessed by the address codes with the prior knowledge of memory locations, CNVCAM can be pre-configured into non-volatile memory content data and searched by an input content data to trigger the further computing process. The unique property of CNVCAM can provide a key component for neural computing.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: March 14, 2017
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 9214465
    Abstract: A Dynamic Random Access Memory (DRAM) cell and a semiconductor Non-Volatile Memory (NVM) cell are incorporated into a single Non-Volatile Dynamic Random Access Memory (NVDRAM) cell. The NVDRAM cell is operated as the conventional DRAM cell for read, write, and refreshment on dynamic memory applications. Meanwhile the datum in the NVM cells can be directly loaded into the correspondent DRAM cells in the NVDRAM cell array without applying intermediate data amplification and buffering leading to high speed non-volatile data access. The datum in DRAM cells can be also stored back to the correspondent semiconductor NVM cells in the NVDRAM cells for the datum required for non-volatile data storage. The NVDRAM of the invention can provide both fast read/write function for dynamic memory and non-volatile memory storage in one unit memory cell.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: December 15, 2015
    Assignee: FlashSilicon Incorporation
    Inventor: Lee Wang
  • Patent number: 9117518
    Abstract: Non-Volatile Register (NVR) and Non-Volatile Shift Register (NVSR) devices are disclosed. The innovative NVR and NVSR devices of the invention can rapidly load the stored non-volatile data in non-volatile memory elements into their correspondent static memory elements for fast and constant referencing in digital circuitry. According to the invention, the loading process from non-volatile memory to static memory is a direct process without going through the conventional procedures of accessing the non-volatile memory, sensing from the non-volatile memory, and loading into the digital registers and shift registers.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: August 25, 2015
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 9082490
    Abstract: An Ultra-low power programming method for N-channel semiconductor Non-Volatile Memory (NVM) is disclosed. In contrast to the grounded voltage at the source electrode of an N-channel semiconductor NVM for the conventional Channel Hot Electron Injection (CHEI) programming, the source electrode in the programming method of the invention is necessarily floating with no voltage bias to prevent applied electrical fields toward the source electrode. The drain electrode of the N-channel semiconductor NVM is reversely biased with a positive voltage VDB relative to the substrate to facilitate the valence band electrons in the P-type substrate to tunnel to the conducting band of the N-type drain electrode. A positive high gate voltage pulse is then applied to the gate electrode of the N-channel semiconductor NVM to collect the surface energetic electrons toward the charge storage material.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: July 14, 2015
    Assignee: FlashSilicon Incorporation
    Inventor: Lee Wang
  • Patent number: 9048137
    Abstract: Scalable Gate Logic Non-Volatile Memory (SGLNVM) devices fabricated with the conventional CMOS process is disclosed. Floating gates of SGLNVM with the minimal length and width of the logic gate devices form floating gate Metal-Oxide-Semiconductor Field Effect Transistor. The floating gates with the minimal gate length extend over silicon active areas to capacitively couple control gates embedded in silicon substrate (well) through an insulation dielectric. The embedded control gate is formed by a shallow semiconductor type opposite to the type of the silicon substrate or well. Plurality of SGLNVM devices are configured into a NOR-type flash array where a pair of SGLNVM devices share a common source electrode connected to a common ground line with two drain electrodes connected to two separate bitlines. The pairs of the NOR-type SGLNVM cells are physically separated and electrically isolated by dummy floating gates to minimize cell sizes.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: June 2, 2015
    Assignee: FLASHSILICON INCORPORATION
    Inventor: Lee Wang
  • Patent number: 8988104
    Abstract: Innovative Non-Volatile Look-Up-Table (NV-LUT) has been constructed by Single Gate Logic Non-Volatile Memory (SGLNVM) devices processed with the standard CMOS logic process. One of a pair of complementary SGLNVM devices is always programmed to the high threshold voltage state and the other remains in the low threshold voltage state. By applying digital voltage rail (VDD and VSS) to the input nodes of the pair of complementary SGLNVM devices, the output node of the pair of complementary SGLNVM devices outputs digital signals according to its configuration. The NV-LUT outputs digital signals from a plurality of pairs of complementary SGLNVM devices through a digital switching multiplexer. The NV-LUT is a good substitution for SRAM based LUT commonly used in Field Programmable Gate Array (FPGA).
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: March 24, 2015
    Assignee: FlashSilicon Incorporation
    Inventor: Lee Wang
  • Patent number: 8879323
    Abstract: An interconnection matrix consists of a plurality of semiconductor Non-Volatile Memory (NVM) forming an M×N array. Semiconductor NVM devices in the array are either programmed to a high threshold voltage state or erased to a low threshold voltage state according to a specific interconnection configuration. Applied with a gate voltage bias higher than the low threshold voltage and lower than the high threshold voltage to the control gates of the entire semiconductor NVM devices in the array, the configured interconnection network is formed. The disclosed interconnection matrix can be applied to configuring circuit routing in Integrated Circuit (IC).
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: November 4, 2014
    Assignee: FlashSilicon Incorporation
    Inventor: Lee Wang