Patents Assigned to FLEXENERGY
  • Patent number: 11143458
    Abstract: A heat exchanger includes an outer tube having a first axial end and a second axial end, and a pressure barrier tube positioned generally concentric to and within the outer tube such that a first flowpath is defined axially through at least a portion of the outer tube and radially between the outer tube and the pressure barrier tube. A second flowpath is defined within and at least partially axially through the pressure barrier tube. The heat exchanger also includes a first plurality of fins coupled to and extending between the outer tube and the pressure barrier tube, through the first flowpath, and a second plurality of fins coupled to and extending radially inward from the pressure barrier tube, through the second flowpath. A first fluid in the first flowpath exchanges heat with a second fluid in the second flowpath via heat transfer through the first plurality of fins, the pressure barrier tube, and the second plurality of fins.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: October 12, 2021
    Assignee: FLEXENERGY ENERGY SYSTEMS, INC.
    Inventors: Brian Finstad, Gary Manter, Christopher David Bolin
  • Patent number: 10222129
    Abstract: A heat exchanger includes a casing having a first inlet, a first outlet, a second inlet, and a second outlet, and a plate assembly positioned between the first inlet and the first outlet and between the second inlet and the second outlet and at least partially in the casing, the plate assembly is being configured to transfer heat between a first fluid and a second fluid. The heat exchanger also includes a first plenum connecting a first side of the plate assembly and configured to direct the first fluid from first inlet to the plate assembly, and a second plenum connecting a second side of the plate assembly and configured to direct the first fluid from the plate assembly to the first outlet. An exterior of the second plenum is in contact with the second fluid, and the second plenum is configured to resiliently deflect in response to thermal expansion.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: March 5, 2019
    Assignee: FLEXENERGY
    Inventors: Brian Finstad, Gary Manter
  • Publication number: 20130236372
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Thomas Renau Denison, Boris A. Maslov
  • Publication number: 20130232985
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Douglas HAMRIN, Richard MARTIN, Jeffrey ARMSTRONG
  • Publication number: 20130236369
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Boris A. MASLOV, Douglas HAMRIN
  • Publication number: 20130232984
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Steve Lampe, Douglas Hamrin
  • Publication number: 20130236839
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Steve Lampe, Douglas Hamrin
  • Publication number: 20130232940
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventor: Jeffrey ARMSTRONG
  • Publication number: 20130236370
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventor: Boris A. MASLOV
  • Publication number: 20130232946
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Douglas HAMRIN, Jeffrey ARMSTRONG
  • Publication number: 20130232876
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Jeffrey ARMSTRONG, Boris A. MASLOV
  • Publication number: 20130232947
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Jeffrey ARMSTRONG, Richard MARTIN, Douglas HAMRIN
  • Publication number: 20130233256
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventor: Mark SCHNEPEL
  • Publication number: 20130233288
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventor: Mark SCHNEPEL
  • Publication number: 20130236841
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Jeffrey ARMSTRONG, Richard MARTIN, Douglas HAMRIN, Joe PERRY
  • Publication number: 20130236845
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Douglas HAMRIN, Steve LAMPE
  • Publication number: 20130232944
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Steve LAMPE, Douglas Hamrin
  • Publication number: 20130232983
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventor: Boris A. Maslov
  • Publication number: 20130233213
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Richard MARTIN, Jeffrey ARMSTRONG, Douglas HAMRIN
  • Publication number: 20130232943
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Steve LAMPE, Douglas HAMRIN