Abstract: An enhanced vision system and method for use with vision systems with an imager sensitive to infrared radiation of less than 2-microns in wavelength, to produce a first image signal. Another imager sensitive to infrared radiation at least 3-microns in wavelength may be used to produce a second image signal. Preferably, the first image signal represents sensed electric light sources, and the second image signal represents sensed background such as terrain, runways, structures, and obstacles. A signal processor combines an image signal representing locally maximum values of the first image signal with the second image signal to create a displayed image.
Abstract: A high speed system for locating and decoding glyphs on documents is disclosed. The system includes acquiring one or more images of a document containing a glyph. One-dimensional projections of the images are correlated against a reference function to locate the glyph in the images. The position of the glyph is refined by correlating against a kernel designed to have a maximum response when aligned over a corner of the glyph. Symbols in the glyph are decoded utilizing a kernel which generates a positive response for one symbol type and a negative response for the other.
Type:
Grant
Filed:
September 20, 1999
Date of Patent:
June 20, 2000
Assignee:
Flir Systems, Inc.
Inventors:
Christopher W. Lorton, James C. Griner, Creed F. Jones, III, Richard P. Williams, Larry Rystrom, James D. Orrell, III
Abstract: A micro-bolometric infrared (IR) staring array is described. The active element in each pixel within a two-dimensional array is a device having a selectively forward-biased p-n junction, e.g. a selectively biased diode. Each diode in the array serves as both an IR energy detecting element and a switching element. Each diode in a given row of the IR pixel array to be sensed, or read, is driven at a constant voltage, rendering its IR response highly controllable in the forward biased operating curve of the diodes in the addressed row. Diodes not being driven are, due to their reverse bias, in their off state producing minute leakage current and thus make no significant contribution to the sensed current representing a given pixel's IR exposure. The row-addressed driven or active diodes are sensed column by column by sample and hold techniques to produce a two-dimensional IR pixel image of a target.
Abstract: The imaging range finder of the invention includes a radiation transmitter, a transmitting section and a receiving section. The transmitting section directs radiation across an angular field of view by a first rotating mirror having a plurality of facets. The receiving section includes a second rotating mirror also with a plurality of facets which collects any reflected radiation. An image is produced by measuring the intensity of the reflected radiation at numerous points in the field of view. Range is determined by radiation modulation. Range may be determined more precisely at shorter ranges by modulating the radiation to produce two subcarriers and using one subcarrier to supply short range information. The finder is stabilized to preserve imaging and range finding accuracy when it is exposed to vibration or pitch-angle disturbance. The invention also discloses a method of imaging and range finding over very wide angles and at standard picture frame frequencies.
Type:
Grant
Filed:
November 7, 1988
Date of Patent:
April 10, 1990
Assignee:
FLIR Systems, Inc.
Inventors:
James R. Kerr, Michael E. Fossey, David M. Aikens, Bruce L. Cannon, John J. McDonald
Abstract: A thermal imaging system generating high resolution images at commercial T.V. rates while scanning relatively large apertures comprising a facet mirror mounted for rotation about a rotational axis, a framing mirror mounted on axis for oscillation about an oscillatory axis, and an off axis, magnifying relay lens system for reimaging the pupil at the facet mirror onto the framing mirror so that there is a real pupil at the framing mirror with no image artifacts. The relay lens system is located in the optical path between the facet mirror and the framing mirror. The relay lens system defines an image plane and at least one point blackbody is located substantially at the image plane for purposes of providing a video reference and calibration. A detector receives the focused beam of radiation reflected by the facet mirror for subsequent display on commercial T.V. monitors. The detector shares vacuum with the high-speed scanner.