Abstract: A remote station and method for rendering a ground plane over video feed are provided. The remote station comprises a processor, a communication interface for communicating with an unmanned vehicle (UV), and a non-transitory memory device storing a communications module. The communications module comprises machine-readable instructions that, when executed by the processor, causes the processor to render a ground plane over video feed. The method comprises receiving a video feed from a camera on a UV, receiving from the UV telemetry information of the camera, receiving from the camera a zoom factor of the camera, calculating a horizon of the camera at a UV controller of the UV, and rendering the horizon as an overlay image on the video feed at a display of the UV controller.
Type:
Grant
Filed:
April 25, 2019
Date of Patent:
January 12, 2021
Assignee:
FLIR UNMANNED AERIAL SYSTEMS ULC
Inventors:
Marco Peter Silva Pedrosa, Mark Nathan Holden, Marcus White, Charles R. Elliott
Abstract: An unmanned aerial vehicle and process for automatically calibrating the unmanned aerial vehicle having at least one magnetic sensor is described. The calibration process involves receiving an internal or external control command to initiate a take-off process by the unmanned aerial vehicle. A hover mode maintains the unmanned aerial vehicle at hover position, and a calibration rotation sequence rotates the unmanned aerial vehicle. The calibration process further involves receiving measurement data from sensors of the unmanned aerial vehicle during the calibration rotation sequence and calculating calibration parameters using the measurement data. The calibration process may implement corrections using the calibration parameters.