Patents Assigned to FLISOM AG
  • Patent number: 11641001
    Abstract: Embodiments of the present disclosure generally relate to flexible photovoltaic modules that include a multi-layered substrate. In some embodiments, the multi-layered substrate includes one or more layers that are configured to improve the elastic modulus, rigidity, or stiffness of a flexible substrate of a flexible photovoltaic module during a deposition process step at an elevated temperature that is used to form the flexible photovoltaic module. The one or more layers of the multi-layered substrate may also provide improved barrier properties that prevent environmental contaminants from affecting the performance of a formed photovoltaic module, which includes the multi-layered substrate, during normal operation.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: May 2, 2023
    Assignee: FLISOM AG
    Inventor: Julian Christoph Perrenoud
  • Patent number: 11621361
    Abstract: A photovoltaic apparatus is provided including a first photovoltaic module and a second photovoltaic module. Each photovoltaic module includes a front sheet having an outer portion and an inner portion. The outer portion is disposed around a core to form a keder. Each photovoltaic module further includes a back sheet and a photovoltaic device disposed between the front sheet and the back sheet. Each photovoltaic device includes an array of photovoltaic cells.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: April 4, 2023
    Assignee: FLISOM AG
    Inventors: Stephan Stutterheim, Andreas Bogli, Ivan Sinicco
  • Patent number: 11588063
    Abstract: A photovoltaic apparatus (1000) is provided including a front sheet (250) having a first portion (2501) and a second portion (2502). The photovoltaic apparatus further includes a back sheet (210) having a first portion (2101), a second portion (2102), and a first folded portion (2103), where the second portion of the front sheet is disposed between the second portion of the back sheet and the first folded portion of the back sheet. The photovoltaic apparatus further includes one or more photovoltaic devices (100) disposed between the first portion of the front sheet and the first portion of the back sheet, where each of the one or more photovoltaic devices includes an array of photovoltaic cells (105).
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: February 21, 2023
    Assignee: FLISOM AG
    Inventor: Thomas Netter
  • Patent number: 11499221
    Abstract: A deposition system is provided for guiding a flexible substrate along a deposition path. The deposition system includes a payout hub for unwinding the flexible substrate; a pickup hub for winding the flexible substrate; one or more evaporation sources (300); one or more electrodes (510) spaced apart from the one or more evaporation sources in a first direction; one or more measurement devices (550); and a controller (601) configured to adjust one or more voltages provided to the one more electrodes.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: November 15, 2022
    Assignee: FLISOM AG
    Inventors: Bernhard Schlaeppi, Michael Akermann
  • Patent number: 11277094
    Abstract: A photovoltaic apparatus is provided including a first portion having a first surface facing a first direction; a second portion located in a different position in the first direction from the first portion; and a third portion located in a different position in the first direction from the first portion; a front sheet and a back sheet each extending at least partially through each of the first portion, the second portion, and the third portion. The photovoltaic apparatus further includes a first rigid folded portion connecting the first portion to the second portion, the first rigid folded portion including portions of the front sheet and the back sheet; and a second rigid folded portion connecting the first portion to the third portion, the second rigid folded portion including portions of the front sheet and the back sheet.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: March 15, 2022
    Assignee: FLISOM AG
    Inventors: John Oldridge, Thomas Netter, Roland Kern
  • Patent number: 11257966
    Abstract: A method for fabricating thin-film optoelectronic devices (100), the method comprising: providing a alkali-nondiffusing substrate (110), forming a back-contact layer (120); forming at least one absorber layer (130) made of an ABC chalcogenide material, adding least one and advantageously at least two different alkali metals, and forming at least one front-contact layer (150) wherein one of said alkali metals comprise Rb and/or Cs and where, following forming said front-contact layer, in the interval of layers (470) from back-contact layer (120), exclusive, to front-contact layer (150), inclusive, the comprised amounts resulting from adding alkali metals are, for Rb and/or Cs, in the range of 500 to 10000 ppm and, for the other alkali metals, typically Na or K, in the range of 5 to 2000 ppm and at most ½ and at least 1/2000 of the comprised amount of Rb and/or Cs.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: February 22, 2022
    Assignee: FLISOM AG
    Inventors: Patrick Reinhard, Adrian Chirila
  • Patent number: 10982319
    Abstract: Embodiments of the present disclosure generally relate to evaporation sources used for physical vapor deposition of material onto substrates and more particularly for controlled coating of large substrates, such as vacuum deposition of copper, indium, gallium, selenium, tellurium, cadmium, or zinc on flexible substrates. Embodiments disclosed herein are able to control the evaporation rate of the source material during processing so as to obtain a uniform deposition across the width of the substrate as the complete length of a roll-to-roll substrate is moved past the evaporation source during processing.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: April 20, 2021
    Assignee: FLISOM AG
    Inventors: Marta Ruth, Reto Pfeiffer
  • Patent number: 10971640
    Abstract: A method (200) for fabricating patterns on the surface of a layer of a device (100), the method comprising: providing at least one layer (130, 230); adding at least one alkali metal (235) comprising Cs and/or Rb; controlling the temperature (2300) of the at least one layer, thereby forming a plurality of self-assembled, regularly spaced, parallel lines of alkali compound embossings (1300, 1305) at the surface of the layer. The method further comprises forming cavities (236, 1300) by dissolving the alkali compound embossings. The method (200) is advantageous for nanopatterning of devices (100) without using templates and for the production of high efficiency optoelectronic thin-film devices (100).
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: April 6, 2021
    Assignee: FLISOM AG
    Inventors: Patrick Reinhard, Adrian Chirila
  • Patent number: 10937916
    Abstract: A photovoltaic apparatus (1000) is provided including a front sheet (250) having a first portion (2501) and a second portion (2502). The photovoltaic apparatus further includes a back sheet (210) having a first portion (2101), a second portion (2102), and a first folded portion (2103), where the second portion of the front sheet is disposed between the second portion of the back sheet and the first folded portion of the back sheet. The photovoltaic apparatus further includes one or more photovoltaic devices (100) disposed between the first portion of the front sheet and the first portion of the back sheet, where each of the one or more photovoltaic devices includes an array of photovoltaic cells (105).
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: March 2, 2021
    Assignee: FLISOM AG
    Inventor: Thomas Netter
  • Patent number: 10770607
    Abstract: Embodiments of the present disclosure generally relate to an apparatus and method of forming a photovoltaic module assembly that contains a plurality of interconnected photovoltaic modules that are used to generate an amount of power when exposed to electromagnetic radiation. The formed photovoltaic module assembly will generally include two or more photovoltaic modules that can generate and deliver power to an external grid, external network or external device. The photovoltaic module assembly can be a stand alone power generating device or be disposed within an array of interconnected photovoltaic devices.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: September 8, 2020
    Assignee: FLISOM AG
    Inventors: Stephan Stutterheim, Andreas Bogli, Ivan Sinicco
  • Patent number: 10734538
    Abstract: A photovoltaic apparatus (200) is provided including a back sheet (210) and a photovoltaic device (100) disposed over the back sheet. The photovoltaic device includes an array of photovoltaic cells (101-104) extending in a first direction; and a plurality of serial interconnects (191) having a length that extends in a second direction, wherein each serial interconnect is disposed between and electrically connects consecutive photovoltaic cells of the array. The photovoltaic apparatus further includes a front sheet (250) disposed over the photovoltaic device, the front sheet having a plurality of structures (220), wherein each structure has one or more edges (221) aligned with one of the serial interconnects.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 4, 2020
    Assignee: FLISOM AG
    Inventors: Louis Schar, Thomas Netter
  • Patent number: 10700227
    Abstract: A flexible photovoltaic apparatus is provided including a photovoltaic device that includes an array of photovoltaic cells having a first end and a second end. The array extends in a first direction from the first end to the second end. The photovoltaic apparatus further includes a first fabric that includes an insulating fabric, a first conductor disposed in the insulating fabric and connected to the first end of the array, and a second conductor disposed in the insulating fabric and connected to the second end of the array.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: June 30, 2020
    Assignee: FLISOM AG
    Inventors: Stephan Stutterheim, Andreas Bogli, Ivan Sinicco, Satish Palika
  • Patent number: 10676812
    Abstract: Embodiments of the disclosure generally relate to evaporation sources used for physical vapor deposition of material onto substrates and more particularly for controlled coating of large substrates, such as vacuum deposition of selenium on flexible substrates. In one embodiment an evaporation source for depositing a source material on a substrate is provided. The evaporation source includes a crucible having a base and a first plurality of walls surrounding an interior region of the crucible. The crucible further includes a supporting ridge extending inwardly towards the interior region. The evaporation source further includes a lid disposed on the supporting ridge, the lid including two or more adjacently positioned sheets, where each sheet includes a plurality of openings formed therethrough, and the plurality of openings in each sheet are not aligned with the plurality of openings formed in an adjacently positioned sheet.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: June 9, 2020
    Assignee: FLISOM AG
    Inventor: Marta Ruth
  • Patent number: 10672941
    Abstract: A method (200) for fabricating thin-film optoelectronic devices (100), the method comprising: providing a substrate (110), forming a back-contact layer (120); forming at least one absorber layer (130) made of an ABC chalcogenide material, adding at least one alkali metal (235), and forming at least one cavity (236, 610, 612, 613) at the surface of the absorber layer wherein forming of said at least one cavity is by dissolving away from said surface of the absorber layer at least one crystal aggregate comprising at least one alkali crystal comprising at least one alkali metal. The method (200) is advantageous for more environmentally-friendly production of photovoltaic devices (100) on flexible substrates with high photovoltaic conversion efficiency and faster production rate.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: June 2, 2020
    Assignees: FLISOM AG, EMPA
    Inventors: Patrick Reinhard, Fabian Pianezzi, Benjamin Bissig, Stephan Buecheler, Ayodhya Nath Tiwari
  • Patent number: 10658532
    Abstract: A method for fabricating thin-film optoelectronic devices (100), the method comprising: providing a alkali-nondiffusing substrate (110), forming a back-contact layer (120); forming at least one absorber layer (130) made of an ABC chalcogenide material, adding least one and advantageously at least two different alkali metals, and forming at least one front-contact layer (150) wherein one of said alkali metals comprise Rb and/or Cs and where, following forming said front-contact layer, in the interval of layers (470) from back-contact layer (120), exclusive, to front-contact layer (150), inclusive, the comprised amounts resulting from adding alkali metals are, for Rb and/or Cs, in the range of 500 to 10000 ppm and, for the other alkali metals, typically Na or K, in the range of 5 to 2000 ppm and at most 1/2 and at least 1/2000 of the comprised amount of Rb and/or Cs.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: May 19, 2020
    Assignee: FLISOM AG
    Inventors: Patrick Reinhard, Adrian Chirila
  • Patent number: 10651324
    Abstract: A method (200) for fabricating patterns on the surface of a layer of a device (100), the method comprising: providing at least one layer (130, 230); adding at least one alkali metal (235) comprising Cs and/or Rb; controlling the temperature (2300) of the at least one layer, thereby forming a plurality of self-assembled, regularly spaced, parallel lines of alkali compound embossings (1300, 1305) at the surface of the layer. The method further comprises forming cavities (236, 1300) by dissolving the alkali compound embossings. The method (200) is advantageous for nanopatterning of devices (100) without using templates and for the production of high efficiency optoelectronic thin-film devices (100).
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: May 12, 2020
    Assignee: FLISOM AG
    Inventors: Patrick Reinhard, Adrian Chirila
  • Patent number: 10566479
    Abstract: A method for vias and monolithic interconnects in thin-film optoelectronic devices in which at least one line segment via hole is formed by laser drilling and passes through front-contact layers and semiconductive active layer, and in which laser drilling causes forming a CIGS-type wall of electrically conductive permanently metalized copper-rich CIGS-type alloy at the inner surface of the via hole, forming a conductive path between at least a portion of front-contact and a portion of back-contact layers, forming a bump-shaped raised portion at the surface of the front-contact layer, forming a raised portion of the back-contact layer, and optionally forming a raised portion of copper-rich CIGS-type alloy covering a portion of the front-contact layer. A thin-film CIGS device includes at least one line segment via hole obtainable by the method.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: February 18, 2020
    Assignee: FLISOM AG
    Inventors: Roger Ziltener, Thomas Netter
  • Patent number: 10431709
    Abstract: A method (200) for fabricating thin-film optoelectronic devices (100), the method comprising: providing a substrate (110), forming a back-contact layer (120); forming at least one absorber layer (130) made of an ABC chalcogenide material, adding at least one alkali metal (235), and forming at least one cavity (236, 610, 612, 613) at the surface of the absorber layer wherein forming of said at least one cavity is by dissolving away from said surface of the absorber layer at least one crystal aggregate comprising at least one alkali crystal comprising at least one alkali metal. The method (200) is advantageous for more environmentally-friendly production of photovoltaic devices (100) on flexible substrates with high photovoltaic conversion efficiency and faster production rate.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 1, 2019
    Assignee: Flisom AG
    Inventors: Patrick Reinhard, Fabian Pianezzi, Benjamin Bissig, Stephan Buecheler, Ayodhya Nath Tiwari
  • Patent number: 10396218
    Abstract: A method (200) for fabricating patterns on the surface of a layer of a device (100), the method comprising: providing at least one layer (130, 230); adding at least one alkali metal (235); controlling the temperature (2300) of the at least one layer, thereby forming a plurality of self-assembled, regularly spaced, parallel lines of alkali compound embossings (1300, 1305) at the surface of the layer. The method further comprises forming cavities (236, 1300) by dissolving the alkali compound embossings. The method (200) is advantageous for nanopatterning of devices (100) without using templates and for the production of high efficiency optoelectronic thin-film devices (100).
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: August 27, 2019
    Assignees: FLISOM AG, EMPA
    Inventors: Patrick Reinhard, Benjamin Bissig, Stephan Buecheler, Ayodhya Nath Tiwari, Fabian Pianezzi
  • Patent number: 10211357
    Abstract: A thin-film optoelectronic module device (100) and design method comprising at least three monolithically-interconnected cells (104, 106, 108) where at least one monolithically-interconnecting line (250) depicts a spatial periodic or quasi-periodic wave and wherein the optoelectronic surface of said thin-film optoelectronic module device (100) presents at least one set of at least three zones (210, 220, 230) having curves of substantially parallel monolithic interconnect lines. Border zones (210, 230) have a lower front-contact sheet resistance than that of internal zone (220). Said curves of substantially parallel interconnecting lines may comprise peaks of triangular or rounded shape, additional spatial periods that are smaller than a baseline period, and mappings from one curve to the adjacent curve such as in the case of non-rectangular module devices (100).
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: February 19, 2019
    Assignee: FLISOM AG
    Inventors: Reto Pfeiffer, Roger Ziltener, Thomas Netter