Patents Assigned to Florida State University Research Foundation
  • Publication number: 20210123840
    Abstract: A tensile test fixture for quick testing of materials with low transverse strength and relatively high longitudinal strength. After the tensile test fixture is loaded into a universal testing machine, such as a two-part load frame, a first test specimen is aligned and tensile tested. Alignment of the first test specimen ensures that all consecutive test specimens are aligned within the tensile test fixture without further alignment required.
    Type: Application
    Filed: December 15, 2020
    Publication date: April 29, 2021
    Applicant: THE FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION INC
    Inventor: Raphael Kampmann
  • Patent number: 10991517
    Abstract: Transmission of low energy light is one of the primary loss mechanisms of a single junction solar cell. Molecular photon upconversion via triplet-triplet annihilation (TTA-UC)—combining two or more low energy photons to generate a higher energy excited state—is an intriguing strategy to surpass this limit. The present disclosure is directed to self-assembled multilayers, e.g., bi- or trilayers, on metal oxide surfaces as a strategy to facilitate TTA-UC emission and demonstrate direct charge separation of the upconverted state. A three-fold enhancement in transient photocurrent is achieved at light intensities as low as two equivalent suns.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: April 27, 2021
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Kenneth Hanson, Sean Hill, Tristan Dilbeck
  • Patent number: 10988390
    Abstract: A reactor system for reacting liquid phase chemical species in a liquid includes a reactor vessel for containing the liquid phase and a gas phase. The reactor vessel can have a gas injection port, a gas exit port, and a liquid-gas interface location within the reactor vessel. A pulsed discharge cathode and anode are provided for creating a pulsed discharge electric field at the liquid-gas interface location. A pulsed discharge power supply delivers a pulsed power input to the pulsed discharge cathode and anode, and thereby creates a plasma comprising ions at the liquid-gas interface location. A secondary electric field source is provided for directing a secondary electric field transverse to the liquid-gas interface. The secondary electric field will drive some of the ions from the gas phase into the liquid phase to react with the liquid phase chemical species. A method for reacting a liquid phase chemical species is also disclosed.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: April 27, 2021
    Assignee: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Bruce R. Locke, Robert J. Wandell, Youneng Tang
  • Patent number: 10986669
    Abstract: This disclosure describes a novel PRACH scheme based on an Analog Bloom Filter, in which user equipment is allowed to transmit multiple sequences to a base station, instead of only one sequence as is the case with the current LTE. A new decoding algorithm is disclosed, which copes with the unique challenges in the signal generated with ZC sequences, such as peak shifting and multiple peaks. In addition, when CFO can be removed the new scheme allows the UE to piggyback log 2 ? ? 7 bits of information along with the signal. Evaluation shows that the new scheme outperforms the existing PRACH of LTE by more than an order of magnitude in many cases, and therefore is a good candidate as the PRACH for future wireless networks (e.g., 5G).
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: April 20, 2021
    Assignee: The Florida State University Research Foundation, Inc.
    Inventor: Zhenghao Zhang
  • Patent number: 10984934
    Abstract: An active quench protection system for a superconducting coil in a magnet includes a quench detector. An inductive heating device is configured to generate an electric field to inductively heat a portion of the superconducting coil. A processor can generate a quench signal responsive to the detection of a quench by the quench detector to cause the inductive heating device to generate the electric field to inductively heat a portion of the superconducting coil. A quench power source can supply a time varying current to the inductive heating device to generate the electric field responsive to a quench signal from the processor. A magnet and a method for the active quench protection of a superconducting coil in a magnet are also disclosed.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: April 20, 2021
    Assignee: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: William Denis Markiewicz, Mark D. Bird
  • Patent number: 10982121
    Abstract: Disclosed are terpolymer adhesives comprising three different repeating domains: a catechol containing domain, a zwitterionic domain, and a crosslinking domain. In specific examples, the polymer can contain a 3,4-dihydroxy-L-phenylalanine (DOPA) segment which contains a catechol group, a poly(sulfobetaine methacrylate) (polySBMA), and poly(ethylene glycol) dimethacrylate (PEGDMA) for light crosslinking. Alternatively, a photocleavable nitrobenzyloxycarbonyl containing crosslinker can be used. The disclosed polymers can be used as biomedical adhesives, such as to prevent leakage from the sutured intestinal tissue.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: April 20, 2021
    Assignee: THE FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventor: Hoyong Chung
  • Patent number: 10969282
    Abstract: Devices, including wireless temperature sensors, are provided. The devices may include a patch including a conductive material, a substrate, and a ground plane. The devices may be used in the systems and methods provided herein to measure a temperature. The substrates of the devices may include a dielectric material.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: April 6, 2021
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Chengying (Cheryl) Xu, Justin Daniel
  • Patent number: 10969311
    Abstract: A tensile test fixture for quick testing of materials with low transverse strength and relatively high longitudinal strength. After the tensile test fixture is loaded into a universal testing machine, such as a two-part load frame, a first test specimen is aligned and tensile tested. Alignment of the first test specimen ensures that all consecutive test specimens are aligned within the tensile test fixture without further alignment required.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: April 6, 2021
    Assignee: THE FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION
    Inventor: Raphael Kampmann
  • Patent number: 10967587
    Abstract: Methods of forming composite materials, which may include filament winding two or more carbon nanotube yarns to form one or more material layers, contacting the yarns with a resin, and applying one or more stretching forces to the material layers. Composite materials also are provided.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: April 6, 2021
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Zhiyong Liang, Gerald Horne, Ayou Hao, Claire Jolowsky
  • Patent number: 10955300
    Abstract: The present invention includes scalable and cost-effective auxetic foam sensors (AFS) created through conformably coating a thin conductive nanomaterial-sensing layer on a porous substrate having a negative Poisson's ratio. In general, the auxetic foam sensors possess multimodal sensing capability, such as large deformation sensing, small pressure sensing, shear/torsion sensing and vibration sensing and excellent robustness in humidity environment.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: March 23, 2021
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Changchun Zeng, Zhiyong Liang, Yan Li, Sida Luo, Tao Liu
  • Patent number: 10947119
    Abstract: Provided are organic metal halide crystals having a 1D nanotube structure. The metal halide crystals may have a unit cell that includes two or more face-sharing metal halide dimers. The metal halide crystals also may include organic cations. Methods of forming metal halide crystals having a 1D nanotube structure also are provided.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: March 16, 2021
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Biwu Ma, Haoran Lin
  • Patent number: 10940188
    Abstract: The present invention concerns the use of compounds for the treatment or prevention of Flavivirus infections, such as Zika virus infections. Aspects of the invention include methods for treating or preventing Flavivirus virus infection, such as Zika virus infection, by administering a compound or class of compound disclosed herein, such as a niclosamide compound, an emricasan compound, a cyclin-dependent kinase inhibitor, a proteasome inhibitor, or a combination of two or more of the foregoing, to a subject in need thereof; methods for inhibiting Flavivirus infections such as Zika virus infections in a cell in vitro or in vivo; pharmaceutical compositions; packaged dosage formulations; and kits for treating or preventing Flavivirus infections, such Zika virus infections.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: March 9, 2021
    Assignees: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC., THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES, THE JOHNS HOPKINS UNIVERSITY
    Inventors: Hengli Tang, Emily M. Lee, Yichen Cheng, Yi Zhou, Wei Zheng, Ruili Huang, Miao Xu, Wenwei Huang, Menghang Xia, Hongjun Song, Guo-Li Ming, Zhexing Wen
  • Patent number: 10927045
    Abstract: Provided herein are methods of making composite materials. The methods may include infiltrating a carbon nanoscale fiber network with a ceramic precursor, curing the ceramic precursor, and/or pyrolyzing the ceramic precursor. The infiltrating, curing, and pyrolyzing steps may be repeated one or more times. Composite materials also are provided that include a ceramic material and carbon nanoscale fibers.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: February 23, 2021
    Assignee: Florida State University Research Foundation, Inc.
    Inventor: Chengying Xu
  • Patent number: 10919032
    Abstract: Compositions that include an ion exchange resin and a polyelectrolyte. The polyelectrolyte may be adsorbed to at least a portion of a surface of the ion exchange resin. Methods of treating a liquid with a composition, and methods of forming a composition that includes an ion exchange resin and a polyelectrolyte.
    Type: Grant
    Filed: January 19, 2019
    Date of Patent: February 16, 2021
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Joseph Schlenoff, Yara Ghoussoub
  • Patent number: 10923707
    Abstract: A method of making an electrode for an electrochemical cell includes the step of providing an electrode composite comprising from 70-98% active material, from 0-10% conductive material additives, and from 2-20% polymer binder, based on the total weight of the electrode composite. The electrode composite is mixed and then compressed the electrode composite into an electrode composite sheet. The electrode composite sheet is applied to a current collector with pressure to form an electrode, wherein the electrode possesses positive characteristics for adhesion according to ASTM standard test D3359-09e2, entitled Standard Test Methods for Measuring Adhesion by Tape Test, and wherein the electrode composite sheet and the electrode possess positive characteristics for flexibility according to the Mandrel Test. The binder can be a single nonfluoropolymer binder. Dry process electrodes are also disclosed.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: February 16, 2021
    Assignee: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Jian-ping Zheng, Qiang Wu
  • Patent number: 10920280
    Abstract: A MNase-Sequence Capture method, mTSS-seq, was developed herein to map genome-wide nucleosome distribution in cancer, for example primary human lung and colon adenocarcinoma tissue. Here, it was confirmed that nucleosome redistribution is an early, widespread event in lung adenocarcinoma (LAC) and colon adenocarcinoma (CRC). These altered nucleosome architectures are consistent between LAC and CRC patient samples indicating that they can serve as important early adenocarcinoma markers. As such, this consistency would be expected in other adenocarcinomas, as well as other carcinomas. It was demonstrated that the nucleosome alterations are driven by the underlying DNA sequence and potentiate transcription factor binding. DNA-directed nucleosome redistributions are widespread early in cancer progression, thus providing a methodology for early detection of cancer in grade one patients.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: February 16, 2021
    Assignee: The Florida State University Research Foundation, Inc.
    Inventor: Jonathan H. Dennis
  • Patent number: 10913789
    Abstract: A chimeric protein having deubiquitinase activity, methods of identifying anti-deubiquitinase compounds using chimeric proteins, and kits comprising chimeric proteins are described herein. In one aspect, a chimeric protein comprises a mammalian deubiquitinase catalytic domain, a linker domain, and a non-human deubiquitinase proteasome binding domain. In another aspect, a method of identifying a compound having deubiquitinase inhibition activity comprises a) providing an assay for identifying a compound having deubiquitinase inhibition activity, wherein the assay comprises one or more biological cells comprising a chimeric protein comprising a mammalian deubiquitinase catalytic domain, a linker domain, and a non-human deubiquitinase proteasome binding domain; b) screening the assay with at least one compound; and c) identifying a compound having deubiquitinase inhibition activity based on survival of the biological cell.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: February 9, 2021
    Assignee: The Florida State University Research Foundation, Inc.
    Inventor: Robert J. Tomko, Jr.
  • Patent number: 10916713
    Abstract: Wire-shaped perovskite devices and methods for manufacturing the same are provided. The perovskite devices have a uniform layer thickness of perovskite material on wire-shaped substrates of semi-conductor or carbon material. The method includes an electro-coating process, which advantageously allows for predictability and repeatability.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: February 9, 2021
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Okenwa O. I. Okoli, Geoffrey R. Adams
  • Patent number: 10916381
    Abstract: Forward and back electron transfer at molecule oxide interfaces are pivotal events in dye-sensitized solar cells, dye-sensitized photoelectrosynthesis cells and other applications. Disclosed herein are self-assembled multilayers as a strategy for manipulating electron transfer dynamics at these interfaces. The multilayer films are achieved by stepwise layering of bridging molecules, linking ions, and active molecule on an oxide surface. The formation of the proposed architecture is supported by ATR-IR and UV-Vis spectroscopy. Time-resolved emission and transient absorption establishes that the films exhibit an exponential decrease in electron transfer rate with increasing bridge length. The findings indicate that self-assembled multilayers offer a simple, straight forward and modular method for manipulating electron transfer dynamics at dye-oxide interfaces.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: February 9, 2021
    Assignee: The Florida State University Research Foundation. Inc.
    Inventors: Kenneth Hanson, Jamie Wang, Tanmay Banerjee, Omotola Ogunsolu
  • Patent number: 10907220
    Abstract: Disclosed are non-naturally occurring zebrafish, such as transgenic zebrafish, which comprise a mutation in the rhodopsin (rho) gene. Also disclosed are methods of identifying compounds useful in treating retinal-specific defects and disorders, such as degeneration. Further disclosed are methods of identifying mutations in the rhodopsin gene that can cause retinal-specific defects.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: February 2, 2021
    Assignee: The Florida State University Research Foundation Inc.
    Inventor: James Fadool