Patents Assigned to Flowtec AG
  • Patent number: 7992452
    Abstract: A measuring transducer of vibration type for registering, on the basis of the Coriolis principle, at least one measured variable of a medium flowing through a pipeline. The measuring transducer includes: a measuring tube, which is connectable with the pipeline via an inlet and an outlet, wherein the measuring tube includes a first measuring tube arc and a second measuring tube arc; an oscillation exciter for exciting oscillations of the measuring tube arcs; at least one oscillation sensor for registering resulting oscillations of the measuring tube arcs; and a transducer housing surrounding the measuring tube arcs. The measuring tube arcs are elastically coupled to the transducer housing. In this way, a robust and reliable measuring operation is guaranteed, which is little influenced by oscillatory in-couplings.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: August 9, 2011
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Martin Anklin-Imhof, Gerhard Eckert, Dieter Mundschin
  • Publication number: 20110187205
    Abstract: A circuit arrangement CA for supplying a field device F1 of automation technology includes a consumer circuit CC, a direct-voltage converter G and an input circuit IC having a 2-conductor connection CN. The input circuit IC includes a modulator unit M, which is connected with a current regulating circuit RC and the direct-voltage converter G. The modulator unit M so controls the direct-voltage converter G that an adjustable total current IS is carried by the 2-conductor connection CN. Use of the controlled direct-voltage converter G enables an optimum power transfer to the consumer circuit CC.
    Type: Application
    Filed: December 5, 2006
    Publication date: August 4, 2011
    Applicant: Endress +Hauser Flowtec AG
    Inventor: Jiri Karbula
  • Publication number: 20110179881
    Abstract: In a method for determining mass flow with a Coriolis mass flow measuring device arranged on a rotary filler, a correction value ?{dot over (m)} is ascertained, which is proportional to the RPM n of the rotary filler. This correction value is subtracted from the conventionally ascertained value {dot over (m)} of the mass flow. The corrected measured value {dot over (m)}corr is thus {dot over (m)}corr={dot over (m)}??{dot over (m)}.
    Type: Application
    Filed: August 31, 2007
    Publication date: July 28, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Gerhard Eckert, Christian Matt, Matthias Altendorf
  • Publication number: 20110174083
    Abstract: Measuring system (1) for determining and/or monitoring flow of a measured medium (25) through a measuring tube (2), wherein the measuring system (1) includes: At least one control/evaluation unit (8), which, based on ultrasonic measurement signals, or based on measurement data derived from the ultrasonic measurement signals, ascertains volume, and/or mass, flow of the measured medium (25) flowing in the measuring tube (2); and a sensor housing (3), which surrounds a first ultrasonic sensor (5) and at least a second ultrasonic sensor (6); wherein at least the first ultrasonic sensor (5) is seated shiftably in the sensor housing (3); wherein the measuring system (1) further includes a sensor holder (4), which is securable on the measuring tube (2) and includes a securement mechanism (9) for the releasable securement of the sensor housing (3) on the sensor holder (4); wherein the sensor housing (3) forms with the ultrasonic sensors (5, 6) a unit securable on the sensor holder (4) and releasable from the sensor h
    Type: Application
    Filed: July 7, 2009
    Publication date: July 21, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Andreas Berger, Achim Wiest
  • Publication number: 20110167907
    Abstract: The measuring transducer comprises: a transducer housing, of which an inlet-side, housing end is formed by means of a flow divider including four flow openings spaced, and an outlet-side, formed by means of a flow divider including four flow openings spaced, from one another. A tube arrangement including four curved measuring tubes connected to the flow dividers for guiding flowing medium along flow paths connected in parallel. Each measuring tubes opens with an inlet-side, measuring tube end into one of the flow openings of the flow divider and with an outlet-side, measuring tube end into one the flow openings of the flow divider. The two flow dividers are embodied and arranged in the measuring transducer, so that the tube arrangement extends both between a first and a second of the measuring tubes and between a third and a fourth of the measuring tubes.
    Type: Application
    Filed: December 16, 2010
    Publication date: July 14, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Christof Huber, Marcel Braun, Alfred Rieder, Christian Schütze
  • Publication number: 20110161018
    Abstract: The measuring system comprises: A measuring transducer of vibration-type, through which medium flows during operation and which produces primary signals corresponding to parameters of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating primary signals delivered by the measuring transducer. The measuring transducer includes: At least one measuring tube for conveying flowing medium; at least one electro-mechanical, oscillation exciter for exciting and/or maintaining vibrations of the at least one measuring tube; and a first oscillation sensor for registering vibrations of the at least one measuring tube and for producing a first primary signal of the measuring transducer representing vibrations at least of the at least one measuring tube.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 30, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Vivek Kumar, Martin Anklin
  • Publication number: 20110154912
    Abstract: The measuring system comprises: A measuring transducer of vibration-type, through which medium flows during operation and which produces primary signals corresponding to parameters of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating primary signals delivered by the measuring transducer. The measuring transducer includes: At least one measuring tube for conveying flowing medium; at least one electro-mechanical, oscillation exciter for exciting and/or maintaining vibrations of the at least one measuring tube; as well as at least a first oscillation sensor for registering vibrations at least of the at least one measuring tube and for producing a first primary signal of the measuring transducer representing vibrations at least of the at least one measuring tube.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 30, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Vivek Kumar, Martin Anklin
  • Publication number: 20110161017
    Abstract: The measuring system comprises: A measuring transducer of vibration-type, through which medium flows during operation and which produces primary signals corresponding to parameters, especially a mass flow rate, a density and/or a viscosity, of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating primary signals delivered by the measuring transducer.
    Type: Application
    Filed: December 29, 2010
    Publication date: June 30, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Vivek Kumar, Martin Anklin
  • Patent number: 7966894
    Abstract: An in line measuring device, includes a measuring transducer having: a least one measuring tube vibrating, during operation, and serving for conveying, a two- or multiphase, flowable medium; an exciter mechanism for producing vibrations of the at least one measuring tube; a sensor arrangement for registering vibrations of the measuring tube and for delivering an oscillation measurement signal representing oscillations of the measuring tube, and a measuring device electronics electrically coupled with the measuring transducer.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: June 28, 2011
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Daniel Kuttler, Alfred Rieder, Hao Zhu, Christof Huber
  • Patent number: 7966863
    Abstract: The viscometer provides a viscosity value (X?) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly, the flow tube is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics which feed an excitation current (iexc) into the excitation assembly. By means of the meter electronics, a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics, which then determine the viscosity value (X?) using the two intermediate values (X1, X2).
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: June 28, 2011
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm
  • Patent number: 7966895
    Abstract: An in line measuring device, includes a measuring transducer of the vibration-type having: at least one measuring tube vibrating, at least at times, during operation, and serving for conveying, at least at times, a two- or multiphase, flowable medium; an exciter mechanism acting on the measuring tube for producing vibrations of the at least one measuring tube; and a sensor arrangement for registering vibrations of the at least one measuring tube and for delivering at least one oscillation measurement signal representing oscillations of the measuring tube. The in line measuring device further includes measuring device electronics electrically coupled with the measuring transducer. The measuring device electronics delivers, at least at times, at least one exciter signal driving the exciter mechanism, and, at least at times, ascertains a damping value of first type, which represents a change of damping opposing the vibrations of the measuring tube within a predeterminable time interval.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: June 28, 2011
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Daniel Kuttler, Alfred Rieder, Hao Zhu, Christof Huber
  • Publication number: 20110146416
    Abstract: The measuring transducer serves for registering at least one physical, measured variable of a flowable medium guided in a pipeline and/or for producing Coriolis forces serving for registering a mass flow rate of a flowable medium guided in a pipeline. For such purpose, the measuring transducer comprises: A transducer housing (71), of which an inlet-side, housing end is formed by means of an inlet-side, flow divider (201) having exactly four flow openings (201A, 201B, 201C, 201D) spaced, in each case, from one another and an outlet-side, housing end is formed by means of an outlet-side, flow divider (202) having exactly four flow openings (202A, 202B, 202C, 202D) spaced, in each case, from one another; as well as exactly four, straight, measuring tubes (181, 182, 183, 184) connected to the flow dividers (201, 202) for guiding flowing medium along flow paths connected in parallel.
    Type: Application
    Filed: March 11, 2010
    Publication date: June 23, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Alfred Rieder, Martin Anklin, Christof Huber
  • Publication number: 20110153036
    Abstract: A field device for connection to a fieldbus, wherein the field device is designed to exchange via the fieldbus a data transmission object with a host computer or with an additional field device, wherein the data transmission object has a plurality of freely loadable, transmission berths, and wherein the field device includes a data mapping structure, which establishes an association between variables to be transmitted and transmission berths of the data transmission object.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 23, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Marco Colucci, Dion Bouwer, Jochen Stinus
  • Publication number: 20110146383
    Abstract: The measuring transducer serves for registering at least one physical, measured variable of a flowable medium guided in a pipeline and/or for producing Coriolis forces serving for registering a mass flow rate of a flowable medium guided in a pipeline. For such purpose, the measuring transducer comprises: A transducer housing (71), of which an inlet-side, housing end is formed by means of an inlet-side, flow divider (201) having exactly four flow openings (201A, 201B, 201C, 201D) spaced, in each case, from one another and an outlet-side, housing end is formed by means of an outlet-side, flow divider (202) having exactly four flow openings (202A, 202B, 202C, 202D) spaced, in each case, from one another; as well as exactly four, straight, measuring tubes (181, 182, 183, 184) connected to the flow dividers (201, 202) for guiding flowing medium along flow paths connected in parallel.
    Type: Application
    Filed: March 11, 2010
    Publication date: June 23, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Alfred Rieder, Martin Anklin, Christof Huber
  • Publication number: 20110132102
    Abstract: Measuring system for determining and/or monitoring flow of a measured medium through a measuring tube, including: At least one ultrasonic transducer; and at least one control/evaluation unit, which, on the basis of measurement signals or on the basis of measurement data derived from the measurement signals, ascertains volume- and/or mass-flow of the medium flowing in the measuring tube; wherein the ultrasonic transducer has at least one electromechanical transducer element, which sends and/or receives ultrasonic signals; and at least one coupling layer in the region between electromechanical transducer element and measured medium, which coupling layer conducts the ultrasonic signals, and which ultrasonic transducer is acoustically coupleable with the measuring tube and at least partially fittable on the outer shape of the measuring tube and which electromechanical transducer element is flexible.
    Type: Application
    Filed: June 2, 2009
    Publication date: June 9, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventor: Pierre Ueberschlag
  • Patent number: 7954388
    Abstract: An inline measuring device, includes a measuring transducer having: at least one measuring tube vibrating, during operation, and serving for conveying, at least at times, a two- or multiphase, flowable medium; an exciter mechanism for producing vibrations of the measuring tube; and a sensor arrangement for registering vibrations of the measuring tube and for delivering oscillation measurement signal representing oscillations of the measuring tube. Measuring device electronics electrically coupled with the measuring transducer.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: June 7, 2011
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Daniel Kuttler, Alfred Rieder, Hao Zhu, Christof Huber
  • Patent number: 7956338
    Abstract: The apparatus includes: At least one light-emitting, optoelectronic, functional element, which, during operation, activated by an electrical signal, emits light, at least at times; at least one light-sensitive, optoelectronic, functional element, which, during operation, activated by light falling thereon, delivers, at least at times, an electrical signal; and at least a third, light-conducting, functional element composed at least partially of transmissive material, especially translucent plastic or glass. The third functional element conveys, during operation, light coupled thereinto, and has at least one essentially planar boundary surface, which deflects light conveyed in the apparatus.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: June 7, 2011
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Mamadi Keita, Simon Antoine, Stefanie Berchtold
  • Publication number: 20110120231
    Abstract: An sensor of a measuring system for determining and/or monitoring the flow of a measured medium through a measuring tube, wherein the ultrasonic sensor is seated in a shiftable manner in a sensor housing parallel to a first inner surface of the sensor housing. The ultrasonic sensor has a coupling element and an electromechanical ultrasound transducer element, wherein the ultrasonic sensor can, at least at times, at least partially, lie against the first inner surface of the sensor housing, and that a guide hanger at least partially lies against a second inner surface of the sensor housing lying opposite the first inner surface, wherein the ultrasonic sensor is seated in a shiftable manner essentially perpendicularly to the first inner surface in the guide hanger, and wherein a spring between the guide hanger and ultrasonic sensor acts essentially perpendicularly to the first inner surface.
    Type: Application
    Filed: July 7, 2009
    Publication date: May 26, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Andreas Berger, Achim Wiest
  • Publication number: 20110120229
    Abstract: A measuring device for registering at least one measured value of at least one process variable. The measuring device comprises a measuring tube. The measuring tube has at least one T-joint, on which at least one measurement transmitter is arranged, wherein the measuring tube together with the T-joint is monolithic, and wherein the T-joint is producible from the measuring tube at least partially by a plastic deformation method.
    Type: Application
    Filed: November 18, 2010
    Publication date: May 26, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Benjamin Kossek, Michal Bezdek, Pierre Ueberschlag
  • Patent number: 7946186
    Abstract: The measuring system is inserted into the course of a process line and serves for registering at least one measured variable of a medium flowing in the process line. The measuring system includes for such purpose a measuring transducer having a measuring tube serving for conveying medium being measured and a sensor arrangement, which has at least one sensor element reacting primarily to the measured variable to be registered, and which delivers by means of at least one sensor element at least one measurement signal influenced by the measured variable. Further, the measuring system includes a measuring electronics communicating with the measuring transducer and using the at least one measurement signal for producing, at least at times, at least one measured value instantaneously representing the measured variable.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: May 24, 2011
    Assignee: Endress + Hauser Flowtec AG
    Inventor: Rainer Hoecker