Patents Assigned to Fluid Quip Technologies, LLC
  • Patent number: 11788038
    Abstract: The present invention relates generally to corn dry-milling, and more specifically, to a method and system for removing insoluble solids mid-evaporation in a corn (or similar carbohydrate-containing grain) dry milling process for making alcohol, such as ethanol, and/or other biofuels/biochemicals. In one example, the method for removing residual insoluble solids in a grain dry milling process includes separating a whole stillage byproduct into an insoluble solids portion and a solubles portion, which includes residual insoluble solids. Then, the solubles portion is subjected to a first evaporation, via one or more evaporators, to remove liquid from the solubles portion to define a concentrated solubles portion. After the first evaporation, the residual insoluble solids are separated from the concentrated solubles portion. And thereafter, the concentrated solubles portion is subjected to a second evaporation, via one or more evaporators, to remove additional liquid from the concentrated solubles portion.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: October 17, 2023
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Michael Franko, John Kwik
  • Patent number: 11746365
    Abstract: Systems and methods for producing carbohydrate (e.g., sugar) streams (and recycling enzymes) from a pretreated or untreated biomass such as cellulosic feedstock, including, for example, “brown stock” feedstock, or waste or recycled fiber sludge produced in the pulp and paper industry, such as for biochemical (e.g., biofuel) production, are provided. In one example, the system and method can produce high purity C6 (glucose and/or fructose) and/or C5 (xylose) sugar streams, and other carbohydrates and/or fibrous materials, from cellulosic feedstocks, such as brown stock or waste fiber sludge, that can be effectively converted into various biochemical products, such as ethanol.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: September 5, 2023
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Jeffrey P. Robert, Neal Jakel, Donald M. Cannon
  • Patent number: 11603507
    Abstract: The present invention relates generally to corn dry-milling, and more specifically, to methods for producing a high protein corn meal from a whole stillage byproduct produced in a corn dry-milling process for making ethanol and a system therefore. In one embodiment, a method for producing a high protein corn meal from a whole stillage byproduct includes, in a corn dry-milling process for making ethanol, separating the whole stillage byproduct into an insoluble solids portion and a thin stillage portion. The thin stillage portion is separated into a protein portion and a water soluble solids portion. Next, the protein portion is dewatered then dried to define a high protein corn meal that includes at least 40 wt % protein on a dry basis.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: March 14, 2023
    Assignee: Fluid Quip Technologies, LLC
    Inventor: Chie Ying Lee
  • Patent number: 11597955
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process), with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: March 7, 2023
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, John Kwik, Michael Franko, Andrew Whalen
  • Patent number: 11519013
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biochemical production, with front end oil separation. Prior to or after saccharification, oil can be removed from a sugar/carbohydrate stream. After saccharification and prior to a sugar conversion process, the sugar/carbohydrate stream includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose can be produced, with such sugar stream being available for biochemical production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein and/or fiber. In other words, oil separation and sugar stream production occurs on the front end of the system and method.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: December 6, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, Albert Pollmeier
  • Patent number: 11505838
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biochemical production. In particular, after saccharification and prior to a sugar conversion process, a sugar/carbohydrate stream is removed from a saccharified stream. The sugar/carbohydrate stream includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose can be produced, with the such sugar stream being available for biochemical production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein and/or fiber. Sugar stream production occurs on the front end of the system and method.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: November 22, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, Albert Pollmeier
  • Patent number: 11447806
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process), with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: September 20, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, John Kwik, Michael Franko, Andrew Whalen
  • Patent number: 11427784
    Abstract: The present invention relates generally to corn dry-milling, and more specifically, to methods for producing a high protein corn meal from a whole stillage byproduct produced in a corn dry-milling process for making ethanol and a system therefore. In one embodiment, a method for producing a high protein corn meal from a whole stillage byproduct includes, in a corn dry-milling process for making ethanol, separating the whole stillage byproduct into an insoluble solids portion and a thin stillage portion. The thin stillage portion is separated into a protein portion and a water soluble solids portion. Next, the protein portion is dewatered then dried to define a high protein corn meal that includes at least 40 wt % protein on a dry basis.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: August 30, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventor: Chie Ying Lee
  • Publication number: 20220243143
    Abstract: The present invention relates generally to corn dry-milling, and more specifically, to methods for producing a high protein corn meal from a whole stillage byproduct produced in a corn dry-milling process for making ethanol and a system therefore. In one embodiment, a method for producing a high protein corn meal from a whole stillage byproduct includes, in a corn dry-milling process for making ethanol, separating the whole stillage byproduct into an insoluble solids portion and a thin stillage portion. The thin stillage portion is separated into a protein portion and a water soluble solids portion. Next, the protein portion is dewatered then dried to define a high protein corn meal that includes at least 40 wt % protein on a dry basis.
    Type: Application
    Filed: April 21, 2022
    Publication date: August 4, 2022
    Applicants: Fluid Quip Technologies, LLC, Fluid Quip Technologies, LLC
    Inventor: Chie Ying Lee
  • Patent number: 11230504
    Abstract: Method for producing a fertilizer or herbicide from a whole stillage byproduct produced in a corn dry-milling process for making alcohol and system therefore is disclosed. In one embodiment, the method includes separating the whole stillage byproduct into an insoluble solids portion and a thin stillage portion. Thereafter, the thin stillage portion can be dewatered to provide a water soluble solids portion and a dewatered protein portion, which may be optionally dried. The protein in the resulting protein portion can serve as a nitrogen source and sulfur containing amino acids can serve as a sulfur source, which can be desirable components in fertilizers and herbicides. To that end, the resulting protein portion directly may be sold and/or used as a fertilizer or herbicide or can be combined with other components to provide the fertilizer or herbicide.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: January 25, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Michael Franko, Neal Jakel, John Kwik
  • Patent number: 11220663
    Abstract: The present invention is directed to improved systems and processes for clarifying a thin stillage stream in a biofuel production process, such as a dry grind alcohol production process, that removes desirable amounts of insoluble solids from at least a portion of the thin stillage stream, thereby realizing any number of process enhancements.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: January 11, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, John Kwik, Michael Franko
  • Patent number: 11053557
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production, using membrane filtration. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process) using membrane filtration, with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: July 6, 2021
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, Albert Pollmeier
  • Patent number: 11034987
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process), with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: June 15, 2021
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, John Kwik, Michael Franko, Andrew Whalen
  • Patent number: 10995351
    Abstract: Systems and methods for producing carbohydrate (e.g., sugar) streams (and recycling enzymes) from a pretreated or untreated biomass such as cellulosic feedstock, including, for example, “brown stock” feedstock, or waste or recycled fiber sludge produced in the pulp and paper industry, such as for biochemical (e.g., biofuel) production, are provided. In one example, the system and method can produce high purity C6 (glucose and/or fructose) and/or C5 (xylose) sugar streams, and other carbohydrates and/or fibrous materials, from cellulosic feedstocks, such as brown stock or waste fiber sludge, that can be effectively converted into various biochemical products, such as ethanol.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: May 4, 2021
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Jeffrey P Robert, Neal Jakel, Donald M. Cannon
  • Patent number: 10995346
    Abstract: A system and process is disclosed for adding pre-fermentation separated non-fermentables, e.g., fiber, germ/oil, and/or protein, to a post-fermentation stream in a corn (or similar carbohydrate-containing grain) dry milling process for making alcohol and/or other biofuels/biochemical. The process includes mixing grain particles with a liquid to produce a slurry having starch and non-fermentables. The slurry is subjected to liquefaction to convert the starch in the slurry to complex sugars and produce a liquefied stream including the complex sugars and non-fermentables. After liquefaction but prior to fermentation of simple sugars resulting from conversion of the complex sugars, the non-fermentables are separated out to define a non-fermentables portion and an aqueous solution including the complex and/or simple sugars. The simple sugars are fermented to provide a fermented stream. Then, the separated non-fermentables portion is reincorporated back into the process into a post-fermentation stream.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: May 4, 2021
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Michael Franko, John Kwik, Neal Jakel
  • Patent number: 10926267
    Abstract: A method and system for reducing the unfermentable solids content in a protein portion, via a counter current wash, at the back end of a corn dry milling process for making alcohol is disclosed. The method can include separating the whole stillage byproduct into an insoluble solids portion and a stillage (centrate) portion, which includes protein. Thereafter, the stillage portion can be separated into a water soluble solids portion and a protein portion. The protein portion may be mixed with clean water to wash and dilute the protein portion. The diluted protein portion may be dewatered to form a dewatered protein portion and a centrate. A portion of the centrate may be used as a protein counter current wash when the protein portion is being separated from the stillage portion. The protein counter current wash reduces the amount of unfermentable solids in the protein portion and the centrate.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: February 23, 2021
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Michael Hora, John Kwik, Neal Jakel
  • Patent number: 10875889
    Abstract: A method and system are disclosed for producing a zein protein product from a whole stillage byproduct produced in a corn (or similar carbohydrate-containing grain) dry-milling process for making alcohol, such as ethanol, and/or other biofuels/biochemicals. In one embodiment, the method includes separating the whole stillage byproduct into an insoluble solids portion and a centrate (solubles) portion, which includes protein, such as zein protein. Thereafter, the centrate (solubles) portion can be separated into a water soluble solids portion and a protein portion, which includes zein protein. Zein protein may be separated out from the protein portion. The remaining protein portion may be further processed to produce a high protein corn meal. The resulting zein protein portion may be further processed to be sold as a zein protein product and/or used as or in, for example, coatings, fibers, adhesives, ceramics, inks, cosmetics, textiles, food products, pharmaceutical, and biodegradable plastics.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: December 29, 2020
    Assignee: Fluid Quip Technologies, LLC
    Inventor: Neal Jakel
  • Patent number: 10800994
    Abstract: The present invention relates generally to corn dry-milling, and more specifically, to methods for producing a high protein corn meal from a whole stillage byproduct produced in a corn dry-milling process for making ethanol and a system therefore. In one embodiment, a method for producing a high protein corn meal from a whole stillage byproduct includes, in a corn dry-milling process for making ethanol, separating the whole stillage byproduct into an insoluble solids portion and a thin stillage portion. The thin stillage portion is separated into a protein portion and a water soluble solids portion. Next, the protein portion is dewatered then dried to define a high protein corn meal that includes at least 40 wt % protein on a dry basis.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: October 13, 2020
    Assignee: Fluid Quip Technologies, LLC
    Inventor: Chie Ying Lee
  • Patent number: 10480038
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biochemical production. In particular, after saccharification and prior to a sugar conversion process, a sugar/carbohydrate stream is removed from a saccharified stream. The sugar/carbohydrate stream includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose can be produced, with the such sugar stream being available for biochemical production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein and/or fiber. Sugar stream production occurs on the front end of the system and method.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: November 19, 2019
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, Albert Pollmeier