Patents Assigned to Fluid-Screen, Inc.
  • Publication number: 20210139831
    Abstract: Methods and apparatus for detecting, quantifying, enriching, and/or separating bacterial species in fluid sample are provided. The fluid sample is provided as input to a microfluidic passage of a microfluidic device, wherein the microfluidic device comprises at least one electrode disposed adjacent to the microfluidic passage. The at least one electrode is activated to capture bacteria in the sample using dielectrophoresis, wherein the capture efficiency of bacteria is at least 99%.
    Type: Application
    Filed: December 31, 2020
    Publication date: May 13, 2021
    Applicant: Fluid-Screen, Inc.
    Inventors: Monika Weber, Slawomir Antoszczyk, Robert Weber
  • Publication number: 20210039098
    Abstract: An apparatus for separating an analyte from a test sample, such as bacteria from blood components, based on their dielectric properties, localizing or condensing the analyte, flushing substantially all remaining waste products from the test sample, and detecting low concentrations of the analyte. The module array includes a plurality of microfluidic channels with connecting microfluidic waste channels for directing undesired material away from the analyte. An electric field is applied causing a positive dielectrophoretic force to the analyte to capture the analyte. The electric field is applied to at least one electrode having a plurality of concentric rings or concentric arcs extending radially outwards from a center point, electrically connected to a voltage source such that when voltage is applied to the at least one electrode, the concentric rings or concentric arcs alternate in voltage potential.
    Type: Application
    Filed: October 15, 2020
    Publication date: February 11, 2021
    Applicant: Fluid-Screen, Inc.
    Inventors: Monika Weber, Siu Lung Lo, Hazael Fabrizio Montanaro Ochoa, Christopher Daniel Yerino, Mark A. Reed
  • Publication number: 20210039099
    Abstract: An apparatus for separating an analyte from a test sample, such as bacteria from blood components, based on their dielectric properties, localizing or condensing the analyte, flushing substantially all remaining waste products from the test sample, and detecting low concentrations of the analyte. The module array includes a plurality of microfluidic channels with connecting microfluidic waste channels for directing undesired material away from the analyte. An electric field is applied causing a positive dielectrophoretic force to the analyte to capture the analyte. The electric field is applied to at least one electrode having a plurality of concentric rings or concentric arcs extending radially outwards from a center point, electrically connected to a voltage source such that when voltage is applied to the at least one electrode, the concentric rings or concentric arcs alternate in voltage potential.
    Type: Application
    Filed: October 15, 2020
    Publication date: February 11, 2021
    Applicant: Fluid-Screen, Inc.
    Inventors: Monika Weber, Siu Lung Lo, Hazael Fabrizio Montanaro Ochoa, Christopher Daniel Yerino, Mark A. Reed
  • Publication number: 20200179947
    Abstract: Methods and apparatus for detection and/or identification of analytes including bacteria using dielectrophoresis and electroosmotic traps. Switching between different frequencies of an applied electric field results in movement of the analyte between dielectrophoresis and electroosmotic trapping states. The use of edge-based sensing techniques enables the use of electrodes with a larger form factor than nanowire sensors. Signal modulation based on analyte contact with the electrode edge is also described.
    Type: Application
    Filed: April 14, 2017
    Publication date: June 11, 2020
    Applicant: Fluid-Screen, Inc.
    Inventor: Monika Weber