Patents Assigned to Fluidigm
  • Patent number: 9435787
    Abstract: A combination of mutually exclusive cell-based analytical techniques can be applied to the same group of cells for analysis. The same group of cells can be prepared for analysis by each technique resulting with candidate cells targeted for mass cytometry analysis. This configuration allows for the correlation of the information between each technique to produce a matrix of multi dimension of cellular information with the same group of cells.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: September 6, 2016
    Assignee: Fluidigm Canada Inc.
    Inventor: Vladimir Baranov
  • Patent number: 9431227
    Abstract: In a mass cytometer or mass spectrometer, a sample of elemental tagged particles is transferred from a dispersion to a gas flow through a carrier aerosol spray for atomization and ionization by inductively coupled plasma (ICP) source. The configuration of the sample transfer apparatus allow for total consumption of the sample by passing the sample spray through a deceleration stage to decelerate the spray of particles from its high velocity expansion. Following the deceleration stage, the decelerated sample of particles can be accelerated and focused through an acceleration stage for transferring into the ICP. This effectively improves the particle transfer between the sample spray and the ICP.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: August 30, 2016
    Assignee: Fluidigm Canada Inc.
    Inventor: Raymond Jong
  • Patent number: 9429500
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: August 30, 2016
    Assignee: Fluidigm Corporation
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A. A. West
  • Patent number: 9383295
    Abstract: Embodiments of the present invention provide improved microfluidic devices and related apparatus, systems, and methods. Methods are provided for reducing mixing times during use of microfluidic devices. Microfluidic devices and related methods of manufacturing are provided with increased manufacturing yield rates. Improved apparatus and related systems are provided for supplying controlled pressure to microfluidic devices. Methods and related microfluidic devices are provided for reducing dehydration of microfluidic devices during use. Microfluidic devices and related methods are provided with improved sample to reagent mixture ratio control. Microfluidic devices and systems are provided with improved resistance to compression fixture pressure induced failures. Methods and systems for conducting temperature controlled reactions using microfluidic devices are provided that reduce condensation levels within the microfluidic device.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: July 5, 2016
    Assignee: Fluidigm Corporation
    Inventors: Martin Pieprzyk, Geoff Facer, Timothy Woudenberg, Brian Fowler
  • Patent number: 9381512
    Abstract: New high density microfluidic devices and methods provide precise metering of fluid volumes and efficient mixing of the metered volumes. A first solution is introduced into a segment of a flow channel in fluidic communication with a reaction chamber. A second solution is flowed through the segment so that the first solution is displaced into the reaction chamber, and a volume of the second solution enters the chamber. The chamber can then be isolated and reactions within the chamber can be initiated and/or detected. High throughput methods of genetic analysis can be carried out with greater accuracy than previously available.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: July 5, 2016
    Assignee: Fluidigm Corporation
    Inventors: David S. Cohen, Jing Wang, Andrew May, Robert C. Jones, Hany Nassef
  • Patent number: 9371965
    Abstract: A microfluidic device includes an input source characterized by a source pressure and an input channel in fluid communication with the input source. The microfluidic device also includes an output channel and a valve having an open state and a closed state. The valve is disposed between the input channel and the output channel and is characterized by a static pressure. The microfluidic device further includes a control channel coupled to the valve and characterized by a control pressure. In the closed state, the control pressure is greater than atmospheric pressure.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: June 21, 2016
    Assignee: Fluidigm Corporation
    Inventors: Naga Gopi Devaraju, Marc A. Unger
  • Patent number: 9364829
    Abstract: The invention relates to methods, reagents and devices for detection and characterization of nucleic acids, cells, and other biological samples. Assay method are provided in which a sample is partitioned into sub-samples, and analysis of the contents of the sub-samples carried out. The invention also provides microfluidic devices for conducting the assay. The invention also provides an analysis method using a universal primers and probes for amplification and detection.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: June 14, 2016
    Assignee: FLUIDIGM CORPORATION
    Inventors: Christian A. Heid, Antoine Daridon
  • Patent number: 9353406
    Abstract: Reagents and methods are provided for detecting the presence of a target polynucleotide in a sample are disclosed. In one aspect, a method for producing a labeled amplification product by amplifying a target nucleic acid sequence to produce an amplification product comprising the target sequence, a first probe-binding sequence 5? to the target sequence, and a second probe-binding sequence 3? to the target sequence, thereby producing an amplification product; and hybridizing a first detection probe to the amplification product, the first detection probe comprising a first segment that hybridizes to the first probe-binding sequence and a second segment that hybridizes to the second probe-binding sequence, thereby producing a labeled amplification product is disclosed.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: May 31, 2016
    Assignee: Fluidigm Corporation
    Inventors: Kenneth J. Livak, Jason A. A. West, Robert C. Jones
  • Patent number: 9316331
    Abstract: Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: April 19, 2016
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Facer, Brian Fowler, Emerson Cheung Quan, Marc Unger
  • Patent number: 9304065
    Abstract: Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: April 5, 2016
    Assignee: Fluidigm Corporation
    Inventors: Brian Fowler, Jake Kimball, Myo Thu Maung, Andrew May, Michael C. Norris, Dominique G. Toppani, Marc A. Unger, Jing Wang, Jason A. A. West
  • Patent number: 9296838
    Abstract: Element tags based on novel metal-polymer conjugates are provided for elemental analysis of analytes, including ICP-MS. A polymer backbone is functionalized to irreversibly bind metals that are selected prior to use by the user. The polymer is further functionalized to attach a linker which allows for attachment to antibodies or other affinity reagents. The polymer format allows attachment of many copies of a given isotope, which linearly improves sensitivity. The metal-polymer conjugate tags enable multiplexed assay in two formats: bulk assay, where the average biomarker distribution in the sample is diagnostic, and single cell format to distinguish a rare (for example a diseased) cell in a complex sample (for example, blood).
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: March 29, 2016
    Assignee: Fluidigm Canada, Inc.
    Inventors: Mitchell A. Winnik, Mark Nitz, Vladimir Baranov, Xudong Lou
  • Patent number: 9284598
    Abstract: Methods and kits for enzymes involved in post-translational modifications are provided. The methods employ elemental analysis, including ICP-MS. The methods allow for the convenient and accurate analysis of post-translation modifications of substrates by enzymes involved in post-translational modifications, including kinase and phosphatase enyzmes.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: March 15, 2016
    Assignee: Fluidigm Canada Inc.
    Inventor: Olga Ornatsky
  • Patent number: 9284597
    Abstract: Methods and kits for enzymes involved in post-translational modifications are provided. The methods employ elemental analysis, including ICP-MS. The methods allow for the convenient and accurate analysis of post-translation modifications of substrates by enzymes involved in post-translational modifications, including kinase and phosphatase enyzmes.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: March 15, 2016
    Assignee: Fluidigm Canada Inc.
    Inventor: Olga Ornatsky
  • Patent number: 9284605
    Abstract: The invention provides methods and devices for detecting, enumerating or identifying target nucleic acid molecules using immobilized capture probes and single molecule sequencing techniques.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: March 15, 2016
    Assignee: Fluidigm Corporation
    Inventor: Stanley N. Lapidus
  • Patent number: 9261503
    Abstract: A combination of mutually exclusive cell-based analytical techniques can be applied to the same group of cells for analysis. The same group of cells can be prepared for analysis by each technique resulting with candidate cells targeted for mass cytometry analysis. This configuration allows for the correlation of the information between each technique to produce a matrix of multi dimension of cellular information with the same group of cells.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: February 16, 2016
    Assignee: Fluidigm Canada Inc.
    Inventor: Vladimir Baranov
  • Patent number: 9249459
    Abstract: The present invention provides methods for analysis of genomic DNA and/or RNA from small samples or even single cells. Methods for analyzing genomic DNA can entail whole genome amplification (WGA), followed by preamplification and amplification of selected target nucleic acids. Methods for analyzing RNA can entail reverse transcription of the desired RNA, followed by preamplification and amplification of selected target nucleic acids.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: February 2, 2016
    Assignee: Fluidigm Corporation
    Inventors: Amy Hamilton, Min Lin, Alain Mir, Martin Pieprzyk
  • Patent number: 9234237
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: January 12, 2016
    Assignee: Fluidigm Corporation
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Patent number: 9218949
    Abstract: A mass spectrometer of the type useful in mass cytometry includes an ion detector. A digitizing system for converting analog signals from the ion detector includes two analog-to-digital converters. The analog-to-digital converters are configured to provide an increased dynamic range for a targeted period while limiting the amount of data generated.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: December 22, 2015
    Assignee: Fluidigm Canada, Inc.
    Inventor: Scott D. Tanner
  • Publication number: 20150361486
    Abstract: The invention provides a method for detecting a target nucleotide sequence by tagging the nucleotide sequence with a nucleotide tag, providing a probe oligonucleotide with a melting temperature Tm1, comprising a regulatory sequence and a nucleotide tag recognition sequence; incorporating the probe oligonucleotide into the tagged polynucleotide in a polynucleotide amplification reaction, providing a regulatory oligonucleotide with a melting temperature Tm2, comprising a sequence segment that complementary to the regulatory sequence and a tail segment that does not hybridize to the probe nucleotide when the sequence segment and the regulatory sequence are annealed, amplifying the tagged target nucleic acid sequence in a PCR amplification reaction using the probe oligonucleotide as a primer, and using a DNA polymerase with high strand displacement activity and low 5?-nuclease activity, and detecting the amplification product; wherein Tm1 and Tm2 are higher than the annealing temperature associated with the polyn
    Type: Application
    Filed: May 15, 2015
    Publication date: December 17, 2015
    Applicant: FLUIDIGM CORPORATION
    Inventors: Kenneth J. Livak, Stacey N. Meyers, Xiaohui Wang, Jun Wang
  • Patent number: 9205468
    Abstract: A method for rendering a microfluidic device suitable for reuse for nucleic acid analysis is provided. The method may include flowing a nucleic acid inactivating solution into a microfluidic channel of the device by pumping; and then flowing a wash solution into the channel by pumping, thereby displacing the nucleic acid inactivating solution from the channel, whereby any residual nucleic acid from a prior use of the device is inactivated.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 8, 2015
    Assignee: Fluidigm Corporation
    Inventors: Jing Wang, Timothy M. Woudenberg