Abstract: A method for erecting the structure of an aerostat in successive horizontal sections, starting from the top horizontal section, including an iteration of the following steps, starting from a current state of completion of the aerostat structure, lifting the current state of the structure, at first lifting points, by means of lifting means arranged in a current transverse position; placing a support device in line with second lifting points for lifting the current state of the structure; transferring the current state of the structure from the lifting means to the support device; moving the lifting means to another transverse position; completely assembling the horizontal section immediately below the current state of the structure on the structure.
Type:
Grant
Filed:
July 17, 2020
Date of Patent:
May 14, 2024
Assignee:
FLYING WHALES
Inventors:
Clément Barthe, Emmanuel Crespin, Jean-Marie Gourlin
Abstract: The method for transporting a payload to a target location, comprises the following steps of providing a hybrid airship comprises a buoyancy enclosure, a gondola carried by the buoyancy enclosure and a payload carrier, and at least one propeller; flying the hybrid airship carrying the payload to a target location, flying the hybrid airship carrying the payload comprising generating a lift force with the at least one propeller. Flying the hybrid airship carrying the payload comprises tilting the longitudinal axis of the buoyancy enclosure to a positive pitch to generate an aerodynamic lift force when the hybrid airship carrying the payload moves longitudinally.
Abstract: The present invention concerns hybrid airship comprising at least one buoyancy enclosure containing a gas lighter than air, a gondola attached below the buoyancy enclosure, the gondola extending along a longitudinal axis, at least one propeller configured to propel the hybrid airship, the at least one propeller being attached to the buoyancy enclosure, at least one generator, configured to provide power to the propeller, the generator being connected to the gondola. The hybrid airship comprises an arm protruding from the gondola and connecting the generator to the gondola.
Abstract: A system for docking an aerostat on a receiving structure, including an unmanned aerial vehicle that can be controlled so as to move between the aerostat and the receiving structure, carrying a first end of a cable that has a second end fixed to the aerostat or the receiving structure, and to attach said first end to the receiving structure or to the aerostat such that the cable connects the aerostat to the receiving structure.
Abstract: An aircraft is provided, including: at least one sensor for measuring a wind; actuators (motors, control surfaces, etc.); a data base embedded aboard the aircraft, the data base associating various values of wind measurement with various set points for the attention of the actuators. The aircraft furthermore includes a system of analysis and control, arranged so as, or programmed so as: to receive values of wind measurement originating from the at least one sensor; searching, inside the data base, for a correspondence of the wind measurement values originating from the at least one sensor, and determining (as a function of this search) the directives to be dispatched to the actuators, and dispatching these determined directives to the actuators.
Abstract: The method for transporting a payload to a target location, comprises the following steps of providing a hybrid airship comprises a buoyancy enclosure, a gondola carried by the buoyancy enclosure and a payload carrier, and at least one propeller; flying the hybrid airship carrying the payload to a target location, flying the hybrid airship carrying the payload comprising generating a lift force with the at least one propeller. Flying the hybrid airship carrying the payload comprises tilting the longitudinal axis of the buoyancy enclosure to a positive pitch to generate an aerodynamic lift force when the hybrid airship carrying the payload moves longitudinally.
Abstract: The present invention concerns hybrid airship comprising at least one buoyancy enclosure containing a gas lighter than air, a gondola attached below the buoyancy enclosure, the gondola extending along a longitudinal axis, at least one propeller configured to propel the hybrid airship, the at least one propeller being attached to the buoyancy enclosure, at least one generator, configured to provide power to the propeller, the generator being connected to the gondola. The hybrid airship comprises an arm protruding from the gondola and connecting the generator to the gondola.
Abstract: A lighter-than-air aircraft is provided including a deballasting system, the deballasting system including: at least one tank containing a liquid; a system for pressurizing the liquid of the at least one tank; and at least one sprayer arranged so as to eject the liquid from the pressurization system.