Patents Assigned to Focal, Inc.
  • Patent number: 6960340
    Abstract: An apparatus is provided for applying to a surface of mammalian tissue including soft, living tissue an initially fluent material and then activating the material by exposure to an energy source. The material may be a liquid capable of polymerization to a non-fluent state by exposure to actinic light. The device, and methods that may be practiced in association with the device, enable a wide range of medical conditions to be treated including, for example, the application of a barrier to soft tissue to prevent post-surgical adhesions.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: November 1, 2005
    Assignee: Focal, Inc
    Inventors: Stephen C. Rowe, Jeffrey A. Hubbell, Stephen J. Herman, Vae Sun, Michael F. Lang, George E. Selecman, Frederick F. Ahari
  • Publication number: 20050234397
    Abstract: This invention describes novel methods and devices for stabilizing and retracting tissue during surgery, in particular internal tissue. Patches of material, preferably biodegradable, are adhered to tissue surfaces. By manipulation of the patches, for example directly with forceps, or via sutures attached to the patches, tissues can be retracted or otherwise manipulated with minimal trauma to the tissues. The method is especially useful in minimally-invasive surgery.
    Type: Application
    Filed: June 17, 2005
    Publication date: October 20, 2005
    Applicant: Focal, Inc.
    Inventors: Bradley Poff, Stephen Herman, Dean Pichon, Amarpreet Sawhney
  • Patent number: 6936005
    Abstract: This invention describes novel methods and devices for stabilizing and retracting tissue during surgery, in particular internal tissue. Patches of material, preferably biodegradable, are adhered to tissue surfaces. By manipulation of the patches, for example directly with forceps, or via sutures attached to the patches, tissues can be retracted or otherwise manipulated with minimal trauma to the tissues. The method is especially useful in minimally-invasive surgery.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: August 30, 2005
    Assignee: Focal, Inc.
    Inventors: Bradley C. Poff, Stephen J. Herman, Dean M. Pichon, Amarpreet S. Sawhney
  • Patent number: 6860870
    Abstract: A gas powered spraying device that can be used for single or multi-part reactive medical polymer compositions is provided. A fluid or one or more reactive solutions are sprayed independently at a tissue surface, and the spraying of each solution of multi-component embodiments is controlled by a separate valve. Each solution is provided with a separate spray outlet, and each spray outlet is surrounded by an annular sheath of flowing gas. Gas flow is provided at two or more flow levels, including a high level flow for active spraying and a low level bypass flow to remove drips and prevent clogging, which can improve device reliability. Gas pressure can be used to drive fluid to its spray outlet, as well as to spray the fluid from the outlet to the tissue surface.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: March 1, 2005
    Assignee: Focal, Inc.
    Inventors: Dean M. Pichon, David J. Nedder, John R. Sousa, J. Jeffrey Kablik, Albert H. Linder
  • Publication number: 20040234574
    Abstract: An improved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, the system is compliant, in that it is capable of conforming to the three dimensional structure of a tissue surface as the tissue bends and deforms during healing processes. The barrier or drug delivery systems is formed as a polymeric coating on tissue surfaces by applied a polymerizable monomer to the surface, and then polymerizing the monomer. The polymerized compliant coating preferably is biodegradable and biocompatible, and can be designed with selected properties of compliancy and elasticity for different surgical and therapeutic applications.
    Type: Application
    Filed: January 7, 2003
    Publication date: November 25, 2004
    Applicant: Focal, Inc.
    Inventors: Amarpreet S. Sawhney, Michelle D. Lyman, Peter K. Jarrett, Ronald S. Rudowsky
  • Publication number: 20040131554
    Abstract: An apparatus is provided for applying to a surface of mammalian tissue including soft, living tissue an initially fluent material and then activating the material by exposure to an energy source. The material may be a liquid capable of polymerization to a non-fluent state by exposure to actinic light. The device, and methods that may be practiced in association with the device, enable a wide range of medical conditions to be treated including, for example, the application of a barrier to soft tissue to prevent post-surgical adhesions.
    Type: Application
    Filed: September 17, 2003
    Publication date: July 8, 2004
    Applicant: Focal, Inc.
    Inventors: Stephen C. Rowe, Jeffrey A. Hubbell, Stephen J. Herman, Vae Sun, Michael F. Lang, George E. Selecman, Frederick F. Ahari
  • Publication number: 20040072961
    Abstract: Gel-forming macromers including at least four polymeric blocks, at least two of which are hydrophobic and at least one of which is hydrophilic, and including a crosslinkable group are provided. The macromers can be covalently crosslinked to form a gel on a tissue surface in vivo. The gels formed from the macromers have a combination of properties including thermosensitivity and lipophilicity, and are useful in a variety of medical applications including drug delivery and tissue coating.
    Type: Application
    Filed: August 27, 2003
    Publication date: April 15, 2004
    Applicant: Focal, Inc
    Inventors: Chandrashekhar P. Pathak, Shikha P. Barman, C. Michael Philbrook, Amarpreet S. Sawhney, Arthur J. Coury, Luis Z. Avila, Mark T. Kieras
  • Patent number: 6639014
    Abstract: Gel-forming macromers including at least four polymeric blocks, at least two of which are hydrophobic and at least one of which is hydrophilic, and including a crosslinkable group are provided. The macromers can be covalently crosslinked to form a gel on a tissue surface in vivo. The gels formed from the macromers have a combination of properties including thermosensitivity and lipophilicity, and are useful in a variety of medical applications including drug delivery and tissue coating.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: October 28, 2003
    Assignee: Focal, Inc.
    Inventors: Chandrashekhar P. Pathak, Shikha P. Barman, C. Michael Philbrook, Amarpreet S. Sawhney, Arthur J. Coury, Luis Z. Avila, Mark T. Kieras
  • Patent number: 6586751
    Abstract: A device for testing the light power output of an optical system comprises a thermochromic element, a body element optionally providing collimation or other means of reproducible positioning, and optionally filters and attenuation. A preferred device fits onto the end of an optical power delivery system, and the thermochromic element changes color if the system output is above a defined threshold. An alternative device provides a flat target with a The device may be adapted to be sterilizable, and may be disposable. Optional means for ensuring that the light delivery system is operational during the measurement are provided.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: July 1, 2003
    Assignee: Focal, Inc.
    Inventors: Dean M. Pichon, Michael G. Dumont, J. Jeffrey Kablik
  • Publication number: 20030104032
    Abstract: An improved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, the system is compliant, in that it is capable of conforming to the three dimensional structure of a tissue surface as the tissue bends and deforms during healing processes. The barrier or drug delivery systems is formed as a polymeric coating on tissue surfaces by applied a polymerizable monomer to the surface, and then polymerizing the monomer. The polymerized compliant coating preferably is biodegradable and biocompatible, and can be designed with selected properties of compliancy and elasticity for different surgical and therapeutic applications.
    Type: Application
    Filed: January 7, 2003
    Publication date: June 5, 2003
    Applicant: Focal, Inc.
    Inventors: Amarpreet S. Sawhney, Michelle D. Lyman, Peter K. Jarrett, Ronald S. Rudowsky
  • Patent number: 6531147
    Abstract: An improved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, the system is compliant, in that it is capable of conforming to the three dimensional structure of a tissue surface as the tissue bends and deforms during healing processes. The barrier or drug delivery systems is formed as a polymeric coating on tissue surfaces by applied a polymerizable monomer to the surface, and then polymerizing the monomer. The polymerized compliant coating preferably is biodegradable and biocompatible, and can be designed with selected properties of compliancy and elasticity for different surgical and therapeutic applications.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: March 11, 2003
    Assignee: Focal, Inc.
    Inventors: Amapreet S. Sawhney, Michelle D. Lyman, Peter K. Jarrett, Ronald S. Rudowsky
  • Publication number: 20030032916
    Abstract: An apparatus is provided for applying to a surface of mammalian tissue including soft, living tissue an initially fluent material and then activating the material by exposure to an energy source. The material may be a liquid capable of polymerization to a non-fluent state by exposure to actinic light. The device, and methods that may be practiced in association with the device, enable a wide range of medical conditions to be treated including, for example, the application of a barrier to soft tissue to prevent post-surgical adhesions.
    Type: Application
    Filed: August 8, 2002
    Publication date: February 13, 2003
    Applicant: Focal, Inc.
    Inventors: Stephen C. Rowe, Jeffrey A. Hubbell, Stephen J. Herman, Vae Sun, Michael F. Lang, George E. Selecman, Frederick F. Ahari
  • Patent number: 6468520
    Abstract: An apparatus is provided for applying to a surface of mammalian tissue including soft, living tissue an initially fluent material and then activating the material by exposure to an energy source. The material may be a liquid capable of polymerization to a non-fluent state by exposure to actinic light. The device, and methods that may be practiced in association with the device, enable a wide range of medical conditions to be treated including, for example, the application of a barrier to soft tissue to prevent post-surgical adhesions.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: October 22, 2002
    Assignee: Focal, Inc.
    Inventors: Stephen C. Rowe, Jeffrey A. Hubbell, Stephen J. Herman, Vae Sun, Michael F. Lang, George E. Selecman, Frederick F. Ahari
  • Publication number: 20020151650
    Abstract: Gel-forming macromers including at least four polymeric blocks, at least two of which are hydrophobic and at least one of which is hydrophilic, and including a crosslinkable group are provided. The macromers can be covalently crosslinked to form a gel on a tissue surface in vivo. The gels formed from the macromers have a combination of properties including thermosensitivity and lipophilicity, and are useful in a variety of medical applications including drug delivery and tissue coating.
    Type: Application
    Filed: April 2, 2002
    Publication date: October 17, 2002
    Applicant: Focal, Inc.
    Inventors: Chandrashekhar P. Pathak, Shikha P. Barman, C. Michael Philbrook, Amarpreet S. Sawhney, Arthur J. Coury, Luis Z. Avila, Mark T. Kieras
  • Publication number: 20020127266
    Abstract: An improved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, the system is compliant, in that it is capable of conforming to the three dimensional structure of a tissue surface as the tissue bends and deforms during healing processes. The barrier or drug delivery systems is formed as a polymeric coating on tissue surfaces by applied a polymerizable monomer to the surface, and then polymerizing the monomer. The polymerized compliant coating preferably is biodegradable and biocompatible, and can be designed with selected properties of compliancy and elasticity for different surgical and therapeutic applications.
    Type: Application
    Filed: November 7, 2001
    Publication date: September 12, 2002
    Applicant: Focal, Inc.
    Inventors: Amapreet S. Sawhney, Michelle D. Lyman, Peter K. Jarrett, Ronald S. Rudowsky
  • Publication number: 20020127196
    Abstract: Hyaluronic acid and polyalkylene glycol (PAG) based materials have been found to exhibit a synergistic interaction, in which the viscosity of the mixture is more than twice as high as the viscosity expected from the viscosity of the individual components. The mixture otherwise has similar properties to those of its constituents, and in particular will crosslink to form covalently crosslinked gels if the PEG carries crosslinkable groups. The viscous formulation adheres well to tissue, and has applications as a tissue sealant and in tissue coating, prevention of adhesions, cell immobilization, regeneration of cartilage, bone and other tissue, as well as in controlled delivery of hyaluronic acid to sites in the body. Related materials exhibit similar effects.
    Type: Application
    Filed: November 28, 2001
    Publication date: September 12, 2002
    Applicant: Focal, Inc.
    Inventors: Luis Z. Avila, Peter K. Jarrett, Hildegard M. Kramer, C. Michael Philbrook
  • Patent number: 6410645
    Abstract: Gel-forming macromers including at least four polymeric blocks, at least two of which are hydrophobic and at least one of which is hydrophilic, and including a crosslinkable group are provided. The macromers can be covalently crosslinked to form a gel on a tissue surface in vivo. The gels formed from the macromers have a combination of properties including thermosensitivity and lipophilicity, and are useful in a variety of medical applications including drug delivery and tissue coating.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: June 25, 2002
    Assignee: Focal, Inc.
    Inventors: Chandrashekhar P. Pathak, Shikha P. Barman, C. Michael Philbrook, Amarpreet S. Sawhney, Arthur J. Coury, Luis Z. Avila, Mark T. Kieras
  • Patent number: 6387977
    Abstract: An impoved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, tissue is stained with a photoinitiator, then the polymer solution or gel having added thereto a defined amount of the same or a different photoinitiator is applied to the tissue. On exposure to light, the resulting system polymerizes at the surface, giving excellent adherence, and also forms a gel in the rest of the applied volume. Thus a gel barrier of arbitrary thickness can be applied to a surface while maintaining high adherence at the interface. This process is referred to herein as “priming”. The polymerizable barrier materials are highly useful for sealing tissue surfaces and junctions against leaks of fluids. In another embodiment, “priming” can be used to reliably adhere preformed barriers to tissue or other surfaces, or to adhere tissue surfaces to each other.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: May 14, 2002
    Assignees: Focal, Inc., Board of Regents, The University of Texas System
    Inventors: Amarpreet S. Sawhney, David A. Melanson, Chandrashekar P. Pathak, Jeffrey A. Hubbell, Luis Z. Avila, Mark T. Kieras, Stephen D. Goodrich, Shikha P. Barman, Arthur J. Coury, Ronald S. Rudowsky, Douglas J. K. Weaver, Marc A. Levine, John C. Spiridigliozzi, Thomas S. Bromander, Dean M. Pichon, George Selecman, David J. Nedder, Bradley C. Poff, Donald L. Elbert
  • Patent number: 6352710
    Abstract: An improved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, the system is compliant, in that it is capable of conforming to the three dimensional structure of a tissue surface as the tissue bends and deforms during healing processes. The barrier or drug delivery systems is formed as a polymeric coating on tissue surfaces by applied a polymerizable monomer to the surface, and then polymerizing the monomer. The polymerized compliant coating preferably is biodegradable and biocompatible, and can be designed with selected properties of compliancy and elasticity for different surgical and therapeutic applications.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: March 5, 2002
    Assignee: Focal, Inc.
    Inventors: Amapreet S. Sawhney, Michelle D. Lyman, Peter K. Jarrett, Ronald S. Rudowsky
  • Patent number: 6352682
    Abstract: Locally deposited polymer depots are used as a vehicle for the immobilization and local delivery of a radionuclide or radiopharmaceutical. Radionuclides are incorporated in their elemental forms, as inorganic compounds, or are attached to a larger molecule or incorporated into the polymer, by physical or chemical methods. Ancillary structure may be employed to control the rate of release. Standard radionuclides which have been used for local radiotherapy may be used, such as radionuclides of iodine, iridium, radium, cesium, yttrium or other elements.
    Type: Grant
    Filed: October 2, 1997
    Date of Patent: March 5, 2002
    Assignee: Focal, Inc.
    Inventors: Richard D. Leavitt, Luis Z. Avila