Patents Assigned to FORCE-A
  • Patent number: 11797821
    Abstract: Systems, methods and apparatus for modifying a data collection trajectory for centrifuges are described. An example system may include a data acquisition circuit to interpret a plurality of detection values, each corresponding to at least one of a plurality of input sensors communicatively coupled to the data acquisition circuit. The system may further include a data storage circuit to store specifications and anticipated state information for a plurality of centrifuge types and an analysis circuit to analyze the plurality of detection values relative to specifications and anticipated state information to determine a centrifuge performance parameter. A response circuit may initiate an action in response to the centrifuge performance parameter.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: October 24, 2023
    Assignee: Strong Force IoT Portfolio 2016, LLC
    Inventors: Charles Howard Cella, Gerald William Duffy, Jr., Jeffrey P. McGuckin, Mehul Desai
  • Patent number: 11796664
    Abstract: The present disclosure addresses a novel feedback design methodology to meet the emerging frontiers of beamforming radio frequency (RF) technology in the areas of machine learning and surveillance. The feasibility of developing adaptive waveform modulation schemes for spectrum management in radars via orthogonal wavelet concepts. With the increasing prevalence of RF spectrum bandwidth limitations, this approach of adaptive feedback waveforms addresses advanced signal processing beamforming technique for phase array RF improving overall sensing performance. The adaptive illumination waveform algorithms for enhancing detection, discrimination, and tracking is motivated from the analogy drawn between the cellular wireless communication systems and the general multi-static radar automotive systems.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: October 24, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Robert Ewing, Yuan Zheng, Siyang Cao, David Brendel
  • Patent number: 11799586
    Abstract: A method for data communication between a first node and a second node includes forming one or more redundancy messages from data messages at the first node using an error correcting code and transmitting first messages from the first node to the second node over a data path, the transmitted first messages including the data messages and the one or more redundancy messages. Second messages are received at the first node from the second node, which are indicative of: (i) a rate of arrival at the second node of the first messages, and (ii) successful and unsuccessful delivery of the first messages. A transmission rate limit and a window size are maintained according to the received second messages. Transmission of additional messages from the first node to the second node is limited according to the maintained transmission rate limit and window size.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: October 24, 2023
    Assignee: Strong Force IOT Portfolio 2016, LLC
    Inventors: Tracey Ho, John Segui, Chun Meng, Steven Blumenthal
  • Patent number: 11795575
    Abstract: A method of performing HVPE heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and ternary-forming gasses (V/VI group precursor), to form a heteroepitaxial growth of a binary, ternary, and/or quaternary compound on the substrate; wherein the carrier gas is Hz, wherein the first precursor gas is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the ternary-forming gasses comprise at least two or more of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), HzTe (hydrogen telluride), SbH3 (hydrogen antimonide, or antimony tri-hydride, or stibine), H2S (hydrogen sulfide), NH3 (ammonia), and HF (hydrogen fluoride); flowing the carrier gas over the Group II/III element; exposing the substrate to the ternary-forming gasses in a predetermined ratio of first ternary-forming gas to second ternary-forming gas (1tf:2tf ratio); and changing the 1tf:2tf ratio over time.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: October 24, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Vladimir Tassev
  • Patent number: 11795574
    Abstract: A method of performing HVPE heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and ternary-forming gasses (V/VI group precursor), to form a heteroepitaxial growth of a binary, ternary, and/or quaternary compound on the substrate; wherein the carrier gas is H2, wherein the first precursor gas is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the ternary-forming gasses comprise at least two or more of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), H2Te (hydrogen telluride), SbH3 (hydrogen antimonide, or antimony tri-hydride, or stibine), H2S (hydrogen sulfide), NH3 (ammonia), and HF (hydrogen fluoride); flowing the carrier gas over the Group II/III element; exposing the substrate to the ternary-forming gasses in a predetermined ratio of first ternary-forming gas to second ternary-forming gas (1tf:2tf ratio); and changing the 1tf:2tf ratio over time.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: October 24, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Vladimir Tassev
  • Patent number: 11787109
    Abstract: The present invention relates to 3-D structures having high temperature stability and improved micro-porosity as well as processes of making and using same. The disclosed 3-D are advantageous because they have low densities and low permittivities. When compared to previous 3-D structures, the present structures maintain their low permittivities over a broader range of electromagnetic frequencies. Thus, when used in communication devices such as array antennas, can provided higher communication performance in high temperature environments.
    Type: Grant
    Filed: February 16, 2023
    Date of Patent: October 17, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Hsiang H. Liu, James O. Hardin, IV, John D. Berrigan
  • Patent number: 11790286
    Abstract: Systems and methods for fleet forward energy and energy credits purchase are disclosed. An example transaction-enabling system may include a resource requirement circuit to aggregate a resource requirement for a fleet of machines to perform a task; a forward resource market circuit to access a forward market for energy; and a machine resource acquisition circuit to execute a transaction on the forward market for energy in response to the aggregated resource requirement.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: October 17, 2023
    Assignee: Strong Force TX Portfolio 2018, LLC
    Inventor: Charles Howard Cella
  • Patent number: 11790288
    Abstract: Systems and methods for machine forward energy transactions optimization are disclosed. A transaction-enabling system may include a resource requirement circuit to aggregate a resource requirement for a fleet of machines to perform a task, a forward resource market circuit to access a forward market for energy, and a controller. The controller may include an artificial intelligence (AI) circuit to configure a transaction on the forward market for energy in response to the aggregated resource requirement and a machine resource acquisition circuit to automatically solicit the configured transaction on the forward market for energy. The AI circuit may also iteratively improve the configured transaction to improve a task outcome of the fleet of machines.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: October 17, 2023
    Assignee: Strong Force TX Portfolio 2018, LLC
    Inventor: Charles Howard Cella
  • Patent number: 11791914
    Abstract: A self-organizing data marketplace includes a plurality of data collectors and a corresponding plurality of industrial environments, wherein each of the plurality of data collectors is structured to collect detection values from at least one sensor of the corresponding industrial environment, a data storage structured to store a data pool comprising at least a portion of the detection values, a data marketplace structured to self-organize the data pool, and a transaction system structured to interpret a user data request, and to selectively provide a portion of the self-organized data pool to the user in response to the user data request.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: October 17, 2023
    Assignee: Strong Force IoT Portfolio 2016, LLC
    Inventors: Charles Howard Cella, Gerald William Duffy, Jr., Jeffrey P. McGuckin, Mehul Desai
  • Patent number: 11790287
    Abstract: Systems and methods for machine forward energy and energy storage transactions are disclosed. An example transaction-enabling system may include a resource requirement circuit to aggregate a resource requirement for a fleet of machines to perform a task, wherein the resource requirement comprises an energy storage capacity requirement, a forward resource market circuit to access a forward market for energy, and a machine resource acquisition circuit to execute a transaction on the forward market for energy in response to the aggregated resource requirement.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: October 17, 2023
    Assignee: Strong Force TX Portfolio 2018, LLC
    Inventor: Charles Howard Cella
  • Patent number: 11788202
    Abstract: A method of performing HVPE heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and ternary-forming gasses (V/VI group precursor), to form a heteroepitaxial growth of a binary, ternary, and/or quaternary compound on the substrate; wherein the carrier gas is Hz, wherein the first precursor gas is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the ternary-forming gasses comprise at least two or more of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), HzTe (hydrogen telluride), SbH3 (hydrogen antimonide, or antimony tri-hydride, or stibine), H2S (hydrogen sulfide), NH3 (ammonia), and HF (hydrogen fluoride); flowing the carrier gas over the Group II/III element; exposing the substrate to the ternary-forming gasses in a predetermined ratio of first ternary-forming gas to second ternary-forming gas (1tf:2tf ratio); and changing the 1tf:2tf ratio over time.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: October 17, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Vladimir Tassev
  • Publication number: 20230325816
    Abstract: Systems and methods for transaction platforms include various systems interacting with each other and transacting in various ways. A method for configuring and launching a marketplace includes: identifying, by a processing system having one or more processors, an opportunity to facilitate configuration of a new marketplace; receiving marketplace opportunity data, wherein the marketplace opportunity data includes information related to a set of assets of one or more types; determining configuration parameters to be implemented in the new marketplace; determining the feasibility of implementing the configuration parameters in the new marketplace; determining data resources to support the new marketplace; determining an architecture of the new marketplace; determining the configuration of the data resources in a data model for the marketplace; configuring a marketplace object; connecting selected data resources to populate the marketplace object; and launching the new marketplace.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 12, 2023
    Applicant: STRONG FORCE TX PORTFOLIO 2018, LLC
    Inventors: Charles Howard CELLA, Brad KELL, Teymour S. EL-TAHRY, Mehul DESAI
  • Publication number: 20230325811
    Abstract: Systems and methods for transaction platforms include various systems interacting with each other and transacting in various ways. A method for configuring and launching a marketplace includes: identifying, by a processing system having one or more processors, an opportunity to facilitate configuration of a new marketplace; receiving marketplace opportunity data, wherein the marketplace opportunity data includes information related to a set of assets of one or more types; determining configuration parameters to be implemented in the new marketplace; determining the feasibility of implementing the configuration parameters in the new marketplace; determining data resources to support the new marketplace; determining an architecture of the new marketplace; determining the configuration of the data resources in a data model for the marketplace; configuring a marketplace object; connecting selected data resources to populate the marketplace object; and launching the new marketplace.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 12, 2023
    Applicant: STRONG FORCE TX PORTFOLIO 2018, LLC
    Inventors: Charles Howard CELLA, Brad KELL, Teymour S. EL-TAHRY, Mehul DESAI
  • Publication number: 20230325720
    Abstract: Systems and methods for transaction platforms include various systems interacting with each other and transacting in various ways. A method for configuring and launching a marketplace includes: identifying, by a processing system having one or more processors, an opportunity to facilitate configuration of a new marketplace; receiving marketplace opportunity data, wherein the marketplace opportunity data includes information related to a set of assets of one or more types; determining configuration parameters to be implemented in the new marketplace; determining the feasibility of implementing the configuration parameters in the new marketplace; determining data resources to support the new marketplace; determining an architecture of the new marketplace; determining the configuration of the data resources in a data model for the marketplace; configuring a marketplace object; connecting selected data resources to populate the marketplace object; and launching the new marketplace.
    Type: Application
    Filed: June 9, 2023
    Publication date: October 12, 2023
    Applicant: STRONG FORCE TX PORTFOLIO 2018, LLC
    Inventors: Charles Howard CELLA, Joshua DOBROWITSKY, Leon FORTIN, JR., Brent BLIVEN, Brad KELL
  • Publication number: 20230325829
    Abstract: Systems and methods for transaction platforms include various systems interacting with each other and transacting in various ways. A method for configuring and launching a marketplace includes: identifying, by a processing system having one or more processors, an opportunity to facilitate configuration of a new marketplace; receiving marketplace opportunity data, wherein the marketplace opportunity data includes information related to a set of assets of one or more types; determining configuration parameters to be implemented in the new marketplace; determining the feasibility of implementing the configuration parameters in the new marketplace; determining data resources to support the new marketplace; determining an architecture of the new marketplace; determining the configuration of the data resources in a data model for the marketplace; configuring a marketplace object; connecting selected data resources to populate the marketplace object; and launching the new marketplace.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 12, 2023
    Applicant: STRONG FORCE TX PORTFOLIO 2018, LLC
    Inventors: Charles Howard CELLA, Brad KELL, Teymour S. EL-TAHRY, Mehul DESAI
  • Publication number: 20230327011
    Abstract: A high electron mobility transistor (HEMT) structure configured to generate a two-dimensional electron gas (2DEG) combined with a grating structure which interacts with the 2DEG when a bias voltage is applied across the HEMT structure to responsively generate Smith-Purcell radiation.
    Type: Application
    Filed: February 9, 2023
    Publication date: October 12, 2023
    Applicant: Government of the United States as Represented by the Secretary of the Air Force
    Inventors: John S Cetnar, David H Tomich, Shivashankar R Vangala
  • Patent number: 11782264
    Abstract: The systems and methods provided herein are directed to a flight motion simulator. The target axes are replaced by a system of Risley pairs. Light is projected to the unit under testing at a range of angles by rotating elements within the Risley pairs.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: October 10, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Joshua K Lentz
  • Patent number: 11782039
    Abstract: A method for reducing the variability, as measured by relative standard deviation (RSD), of an analytical testing technique is provided. This improvement in RSD improves the confidence in the values obtained during field testing. The method includes incorporating a focusing agent into the sampling media, which permits providing sampling media such as thermal desorption tubes preloaded with the focusing agent.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: October 10, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: H. Mitchell Rubenstein
  • Patent number: 11780586
    Abstract: An adaptive force vehicle airbag (AFVA) system includes airbag(s) stowed in a compressed state within an interior of a vehicle. An impact sensor detects a change in motion of the vehicle indicative of a collision. Selectable force gas generator(s) (SFGGs) gas-generating propellant cells that are individually fired. The SFGGs have conduit(s) that receive gas from fired gas-generating propellant cells and direct the gas to inflate at least one of the airbag(s). A controller is communicatively coupled to the inflation initiating component and the gas-generating propellant cells of the SFGGs. The controller enables the AFVA system to: (i) receive an inflation signal from the impact sensor; and (ii) fire a selected number of the gas-generating propellant cells to at least partially inflate the at least one airbag.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: October 10, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Jerry Provenza
  • Patent number: D1001418
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: October 17, 2023
    Assignee: BLUE FORCE GEAR, INC.
    Inventor: John Alexander Daly