Patents Assigned to Ford Motor Company
  • Patent number: 10903508
    Abstract: A fuel cell assembly for a solid polymer electrolyte fuel cell stack may employ a construction in which a plastic film frame is used to frame a catalyst coated membrane within. In one advantageous embodiment, the plastic film frame is adhesive coated on one side and laminated at its inner edge to one surface of the catalyst coated membrane and at its outer edge to the flow field plate on the opposite side. In another advantageous embodiment, the plastic film frame is laminated to sealing features incorporated in a transition region in the flow field plate.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: January 26, 2021
    Assignees: Daimler AG, Ford Motor Company, Nissan Motor Co., LTD.
    Inventors: Simon Farrington, Charles Lee, Alvin Lee
  • Patent number: 10902742
    Abstract: A method and apparatus for teaching and/or evaluating driving behavior of a driver of an autonomous-capable vehicle. The vehicle is operated in a manual-control mode wherein a driver has manual control, and a communication device (audio speaker, visual display, etc.) issues an instruction to the driver to perform a task. As the driver is attempting to perform the task, a sensor monitors the driver's behavior. A driver instruction module (that interfaces with the vehicle's autonomous driving module) determines a deviation between the driver's behavior and a desired behavior to perform the task. If the deviation exceeds a permissible amount, the vehicle is placed under autonomous control (control is taken away from the driver) and the task is completed in a manner that is in accordance with the desired behavior.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: January 26, 2021
    Assignee: Ford Motor Company
    Inventors: Meghashree Kowshika Ramachandra, Andreas Ortseifen, Yuliya Aksyutina, Julian David Pott
  • Patent number: 10894395
    Abstract: A method of forming a 3D part includes applying liquid on a pattern on at least some of a plurality of sheets, applying a bonding agent on the liquid pattern on the at least some of the plurality of sheets, and forming perforations within the plurality of sheets along a perforation outline. The plurality of sheets are bonded together at the patterns between sheets via the bonding agent and a 3D pre-form within a stack of the plurality of sheets is formed. The perforations within each sheet bounds the pattern on each sheet and excess sheet material is removed from the stack of sheets bonded together by separating the plurality sheets along the perforations. Removal of the excess sheet material provides a semi-finished 3D part. The semi-finished 3D part may be further processed, e.g., by bead blasting, to provide a finished 3D part.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: January 19, 2021
    Assignee: Ford Motor Company
    Inventor: John Modzel
  • Publication number: 20210001369
    Abstract: A method of controlling application of at least one material onto a substrate includes configuring a material applicator having an array plate with an applicator array. The applicator array has a plurality of micro-applicators with a first subset of micro-applicators and a second subset of micro-applicators. Each of the plurality of micro-applicators has a plurality of apertures through which fluid is ejected. The first subset of micro-applicators and the second subset of micro-applicators are individually addressable, and a liquid flows through the first subset of micro-applicators and a shaping gas, e.g., air, flows through the second subset of micro-applicators. The flow of shaping gas shapes the flow of the liquid from the first subset of micro-applicators to the substrate.
    Type: Application
    Filed: September 14, 2020
    Publication date: January 7, 2021
    Applicant: Ford Motor Company
    Inventors: Christopher Michael Seubert, Mark Edward Nichols, Kevin Richard John Ellwood, Wanjiao Liu, Aaron Fiala
  • Patent number: 10886549
    Abstract: Simplified methods are disclosed for preparing a catalyst coated membrane that is reinforced with a porous polymer sheet (e.g. an expanded polymer sheet) for use in solid polymer electrolyte fuel cells. The methods involve forming a solid polymer electrolyte membrane by coating membrane ionomer solution onto a first catalyst layer and then applying the porous polymer sheet to the membrane ionomer solution coating, while it is still wet, such that the membrane ionomer solution only partially fills the pores of the porous polymer sheet. A second catalyst ink is then applied which fills the remaining pores of the porous polymer sheet. Not only are such methods simpler than many conventional methods, but surprisingly this can result in a marked improvement in fuel cell performance characteristics.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: January 5, 2021
    Assignees: Daimler AG, Ford Motor Company
    Inventors: Yuquan Zou, Scott McDermid, Massimiliano Cimenti, Shun-wen Amy Yang, Liviu Catoiu
  • Publication number: 20200406286
    Abstract: A material applicator includes an array plate and at least one ultrasonic transducer mechanically coupled to the array plate. The array plate includes a plurality of micro-applicators and each of the micro-applicators has a material inlet, a reservoir, and a micro-applicator plate in mechanical communication with the at least one ultrasonic transducer. Each of the plurality of micro-applicator plates has a plurality of apertures and the at least one ultrasonic transducer is configured to vibrate each of the plurality of micro-applicator plates such that at least one material is ejected through the plurality of apertures as atomized droplets. At least one ultraviolet light source is positioned adjacent to the plurality of micro-applicators and the at least one UV light source is configured to irradiate the atomized droplets ejected through the plurality of apertures.
    Type: Application
    Filed: September 14, 2020
    Publication date: December 31, 2020
    Applicant: Ford Motor Company
    Inventors: Christopher Seubert, Mark Nichols, Kevin Ellwood, Wanjiao Liu
  • Patent number: 10876667
    Abstract: A method is disclosed for making a duct assembly including an internal component part such as a silencer is disclosed. The duct assembly may be made in a blow-molding operation in which first and second duct parts are formed from a single parison as a combined part that is then split apart to receive a component part in a housing and subsequently closed by a closure part. Alternatively, the first and second housing parts may be separately formed and a component part may be inserted into a housing defined by one or both of the first and second duct parts. The first and second duct parts may be joined and sealed by injection molding a ring over telescopically assembled ends of the first and second parts.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: December 29, 2020
    Assignee: FORD MOTOR COMPANY
    Inventors: Chikynda Moore, Robert Howard Saunders, Jr., Robert Joseph Mohan
  • Patent number: 10864541
    Abstract: An apparatus for applying a coating to a substrate includes a base, an applicator, and a quick-connect connector. The base includes a fluid conduit. The applicator includes at least one actuator and an array of nozzle plates. Each nozzle plate defines at least one aperture. The at least one actuator is configured to oscillate the nozzle plates to eject fluid from the apertures. The quick-connect connector couples the fluid conduit to the applicator for fluid communication therebetween.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: December 15, 2020
    Assignee: Ford Motor Company
    Inventors: Scott Adams, Kevin Richard John Ellwood, Wanjiao Liu, Christopher Michael Seubert, Mark Edward Nichols
  • Publication number: 20200386651
    Abstract: A machine assessment system of the present disclosure is for a machining tool including a spindle. The machine assessment system includes a calibrated spindle tool configured to couple to a distal end of the spindle, a displacement sensor configured to measure a performance characteristic of the machining tool based on a controlled excitation of the calibrated spindle tool, and a controller communicably coupled to the displacement sensor to acquire the performance characteristic. In measuring the performance characteristic, the displacement sensor is detached from the calibrated spindle tool. The controller is configured perform a machine health assessment based on the performance characteristic.
    Type: Application
    Filed: July 16, 2020
    Publication date: December 10, 2020
    Applicant: Ford Motor Company
    Inventors: Richard James Furness, Youssef Ziada, David Alan Stephenson
  • Publication number: 20200376577
    Abstract: A thread tap includes a shaft and teeth. The shaft includes helical passages from the threading end to the base end of the shaft. Each passage opens through an aperture in the threading end. A second tap includes a cap and the shaft includes an axially extending passage. The cap is coupled to the threading end and at least partially defines apertures in fluid communication with the passage and the exterior of the tap. A third tap includes teeth spaced apart by a plurality of linear flutes. The shaft includes a central passage and a plurality of flute passages. Each flute passage extends radially outward from a common location in the central passage to a corresponding one of the flutes. The central passage is closed to a terminal end of the threading end.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Applicant: Ford Motor Company
    Inventors: Michael Habel, Ethan Hughey, Shibu Philipose, David Stephenson
  • Patent number: 10843117
    Abstract: A method for producing an active carbon filter for a carbon canister includes defining a body having a honeycomb structure with a plurality of bleed passages from a polymer based material, and forming an adsorption layer along a surface of the body, where the adsorption layer is made of a carbon based material.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: November 24, 2020
    Assignee: Ford Motor Company
    Inventors: Seyyed Mohsen Mousavi Ehteshami, Mohammad Usman, Sami Siddiqui, Zhuoyuan Li, Syed K Ali
  • Patent number: 10830536
    Abstract: A roller transport assembly includes a cart assembly and a roller carriage assembly. The roller carriage assembly is slidably mounted to the cart assembly and has at least one chamber for housing a roller. Each of the chambers includes a linear rail extending along a first axis and a roller coupling device attached to and slidable along the linear rail. The roller coupling device is operable to couple to the roller and move the roller along the first axis adjacent and parallel with the linear rail.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: November 10, 2020
    Assignee: Ford Motor Company
    Inventors: James Engle, Frank Bishop, Elizabeth Bullard, Thomas Kendall
  • Patent number: 10826083
    Abstract: In solid polymer electrolyte fuel cell stacks, increasing the height of support features in the transition regions and/or increasing the depth of the transition regions improves the flow of reactants therein and thus improves the sharing of flow in the channels in the reactant flow fields. The support feature height and transition region depth are increased so as to be out of plane with respect to the landings and channels in the reactant flow fields. The invention is suitable for cells employing metal flow field plates or plates in which no adhesives are employed in the transition regions.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: November 3, 2020
    Assignees: Daimler AG, Ford Motor Company, Nissank Motor Co., Ltd.
    Inventors: Simon Farrington, Christian Caussel
  • Patent number: 10817736
    Abstract: A vehicle includes one or more laterally mounted microphones and a controller programmed to detect a signature of an unoccupied position adjacent the vehicle in outputs of the microphones. The signature may be identified using a machine learning algorithm. In response to detecting an unoccupied position, the controller may invoke autonomous parking, store the location of the unoccupied position for later use, and/or report the unoccupied position to a server, which then informs other vehicles of the available parking. The unoccupied position may be verified by evaluating whether map data indicates legal parking at that location. The unoccupied position may also be confirmed with one or more other sensors, such as a camera, LIDAR, RADAR, SONAR, or other type of sensor.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: October 27, 2020
    Assignee: Ford Motor Company
    Inventors: Harpreestsingh Banvait, Ashley Elizabeth Micks, Jinesh J. Jain, Scott Vincent Myers
  • Patent number: 10816414
    Abstract: A method for determining residual stress in a selectively hardened parts including an unhardened region adjacent to a hardened region is provided. The method includes obtaining a Barkhausen Noise (BN) value for the unhardened region and selecting a corresponding absolute residual stress value from a look-up table. The selected absolute residual stress value accurately estimates the absolute residual stress in the hardened region of the selectively hardened part. In variations of the method the unhardened region is surrounded by the hardened region, the hardened region is a laser hardened region and the unhardened region is not laser hardened.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: October 27, 2020
    Assignee: Ford Motor Company
    Inventor: Michael A. Kopmanis
  • Publication number: 20200324441
    Abstract: A method of forming a molding tool includes performing a computer aided engineering (CAE) analysis on a molding tool design. The CAE analysis predicts flow of injection molded material and a location of gas entrapment within a molding recess of the molding tool design. At least one venting design constraint is applied to the molding tool design as a function of the gas entrapment location. Also, a biomimetic shaped passageway for venting gas away from the gas entrapment location is selected from a plurality of biomimetic shaped passageways. A computational fluid dynamic (CFD) CAE analysis of the molding tool design with the selected biomimetic shaped passageway is performed and modifications of the selected biomimetic shaped passageway are CFD CAE analyzed until a final biomimetic shaped passageway is determined and a molding tool with the final biomimetic shaped passageway is formed.
    Type: Application
    Filed: April 9, 2019
    Publication date: October 15, 2020
    Applicant: Ford Motor Company
    Inventors: Derren Woods, Robert D. Bedard
  • Patent number: 10800266
    Abstract: A mobility system includes an electrically drivable motor vehicle and an electrically drivable battery transport cart. A rechargeable drive battery of the motor vehicle is received in the battery transport cart. The battery transport cart can be releasably inserted into a downwardly open region of a supporting structure of the motor vehicle. The disclosure also relates to a battery transport cart, an electrically drivable motor vehicle and a method to charge a rechargeable drive battery of an electrically drivable motor vehicle.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: October 13, 2020
    Assignee: Ford Motor Company
    Inventors: Arnulf Sponheimer, Markus Kees
  • Patent number: 10799905
    Abstract: A method of controlling application of material onto a substrate includes ejecting atomized droplets from an array of micro-applicators while the array of micro-applicators cyclically moves about at least one axis. The atomized droplets from each of the plurality of micro-applicators overlap with atomized droplets from adjacent micro-applicators and a diffuse overlap of deposited atomized droplets from adjacent micro-applicators is provided on a surface of the substrate. The array of micro-applicators cyclically rotates back and forth around the at least one axis and/or moves back and forth parallel to the at least one axis. For example, the at least one axis can be a central axis of the array of micro-applicators, a length axis of the array of micro-applicators, a width axis of the array of micro-applicators, and the like. Also, the array of micro-applicators can be part of an ultrasonic material applicator used to paint vehicles.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: October 13, 2020
    Assignee: Ford Motor Company
    Inventors: Christopher Michael Seubert, Mark Edward Nichols, Kevin Richard John Ellwood, Wanjiao Liu
  • Publication number: 20200316833
    Abstract: A method for molding a part includes forming a mold having a part cavity and an associated electromagnet, placing resin in the part cavity, the resin including a ferromagnetic pigment, energizing the electromagnet and moving the ferromagnetic pigment towards an A-surface area of the part, and curing the resin with the ferromagnetic pigment concentrated at the A-surface area of the part. The A-surface of the part is free of flow marks and dark spots. Also, the ferromagnetic pigment is introduced into the resin before the resin is placed in the part cavity, or in the alternative, the ferromagnetic pigment is introduced into the resin after the resin is placed in the part cavity.
    Type: Application
    Filed: June 19, 2020
    Publication date: October 8, 2020
    Applicant: Ford Motor Company
    Inventor: Junko PAUKEN
  • Publication number: 20200317269
    Abstract: An assembly includes a suspension link, a worm screw, a worm wheel rotatably engaged with the worm screw, and an arm fixed to the worm wheel and connected to the suspension link.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 8, 2020
    Applicant: Ford Motor Company
    Inventor: Nicholas Anthony Quatrano