Patents Assigned to Formlabs, Inc.
  • Patent number: 11945155
    Abstract: In additive fabrication, less stiff layers generally require a comparatively higher peel force during separation, and that therefore geometric structures that include less stiff layers will also require a comparatively higher peel force during separation. Techniques to lower or otherwise mitigate undesirably large peel forces are described. These techniques include modification to how layers susceptible to a large peel force are formed, modification to a model of a part prior to generating instructions for an additive fabrication device to fabricate the part, and/or improvements to an additive fabrication device hardware.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: April 2, 2024
    Assignee: Formlabs, Inc.
    Inventors: Aruni Kacker, Andrew DeGonge, Garth Whelan
  • Patent number: 11926105
    Abstract: According to some aspects, techniques are described for generating support structures that may be easily removed after fabrication yet provide sufficient structural support during fabrication. In some cases, the techniques may include tuning an extent to which pillars of a support structure are interconnected to one another in regions proximate to the part. In some cases, the techniques may include fabricating very small contact structures, referred to herein as “hair” supports, in regions of a support structure where it connects with the part. In some cases, the techniques may include generating support structures that comprise obliquely-angled tips, which allow forces during fabrication to be applied in a preferred direction even when the support structure does not make a connection to the part in the preferred direction.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: March 12, 2024
    Assignee: Formlabs, Inc.
    Inventor: Benjamin FrantzDale
  • Patent number: 11926096
    Abstract: According to some aspects, an additive fabrication device and a build platform suitable for use within an additive fabrication device are provided. The build platform may include a build surface on which material may be formed by the additive fabrication device when the build platform is installed within the additive fabrication device. According to some embodiments, the build platform may include a flexible build layer and at least one removal mechanism configured to be actuated to apply a force to the flexible build layer. Such actuation may cause the flexible build layer to deform, thereby enabling separation of material adhered to the build surface from the build platform. According to some embodiments, the build platform may comprise a restorative mechanism that acts to return the flexible build layer to a flat state so that subsequent additive fabrication may form material on a flat build surface.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: March 12, 2024
    Assignee: Formlabs, Inc.
    Inventors: Craig Broady, Gurshan Deol, Gagandeep Singh
  • Patent number: 11919235
    Abstract: According to some aspects, techniques that address one or more drawbacks of laser-based optical systems in additive fabrication devices are described. In some aspects, an additive fabrication device may include one or more variable focus lenses that may be operated (e.g., actuated) during fabrication to adjust the focus, and thereby the spot size, of a laser beam. In some aspects, an additive fabrication device may comprise a laser array, such as a plurality of vertical-cavity surface-emitting lasers (VCSELs), that may be operated to direct light into a build region, rather than using a single laser beam, such as a single diode laser. In some aspects, an additive fabrication device may comprise a container that includes a flexible display film, such as a flexible LCD screen, which may be operated to direct light into the container to thereby cure a liquid photopolymer therein.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: March 5, 2024
    Assignee: Formlabs, Inc.
    Inventors: Andrew M. Goldman, Benjamin FrantzDale, Scott Norton
  • Patent number: 11919228
    Abstract: According to some aspects, techniques are provided to mitigate challenges with additive fabrication devices that utilize a film. These techniques include: improvements to an additive fabrication device build platform to more evenly apply forces onto the film; techniques for inhibiting adhesion between a pair of films and for removing dirt or dust therein; techniques for detecting and/or mitigating the effects of scratches or dust on films; and techniques for detecting film punctures, detecting an imminent film puncture, and/or reducing the impact on the device when punctures occur.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: March 5, 2024
    Assignee: Formlabs, Inc.
    Inventors: Benjamin FrantzDale, Shane Wighton
  • Patent number: 11897199
    Abstract: According to some aspects, a method is provided of removing debris from a liquid photopolymer in an additive fabrication device. According to some embodiments, a mesh of solid material may be formed in an additive fabrication device from a liquid photopolymer, and particles of debris present in the liquid photopolymer may adhere to the mesh. The debris may thereby be removed from the liquid photopolymer by removing the mesh from the additive fabrication device. The mesh may then be discarded.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: February 13, 2024
    Assignee: Formlabs, Inc.
    Inventors: Adam Damiano, Andre Comella
  • Patent number: 11891513
    Abstract: Methods and compositions for additive manufacturing of silicone parts are provided. The methods can use SLA printing techniques to print silicone parts that exhibit excellent hardness, tear strength and elongation at break. The parts can be produced by using low dosages of radiation. In various embodiments, the silicone compositions include a mercapto-derivatized polysiloxane having two or more functional groups, an alkenyl-derivatized polysiloxane, and a photo-initiator.
    Type: Grant
    Filed: November 30, 2022
    Date of Patent: February 6, 2024
    Assignee: Formlabs Inc.
    Inventor: Alexander Philip Haring
  • Publication number: 20240025117
    Abstract: According to some aspects, degradation of material in a sintering additive fabrication process may be mitigated or avoided by fabricating parts within a chamber that includes one or more thermal breaks. The thermal break may be implemented using a variety of structures, but generally allows material in the chamber close to the surface to be maintained at different temperatures than the material further from the surface. For instance, as a result of the thermal break, parts located within the material of the chamber that were formed earlier during fabrication may be kept cooler to avoid damage to the parts yet the upper surface (sometimes called the “build surface”) of unconsolidated material may be heated enough so as to require minimal additional energy exposure to trigger consolidation.
    Type: Application
    Filed: August 7, 2023
    Publication date: January 25, 2024
    Applicant: Formlabs, Inc.
    Inventors: Robb Morgan, Luke Plummer, Christopher Auld
  • Patent number: 11878467
    Abstract: Techniques for producing a flat film surface in additive fabrication are provided. According to some aspects, a movable stage may be arranged beneath a container having a base that includes a flexible film. The movable stage may include a segmented member in which a number of segments are aligned along a common axis. The segmented member may maintain contact with the flexible film as the movable stage moves beneath the container, with the segmented member producing a flat surface of the flexible film, at least within a region above the movable stage. According to some embodiments, multiple segmented members may be provided within the movable stage, such as in parallel with one another.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: January 23, 2024
    Assignee: Formlabs, Inc.
    Inventors: Shane Wighton, Maxim Lobovsky, Robert Joachim, Jack Moldave, Adam Damiano, Christian Reed, Dmitri Megretski, Benjamin FrantzDale
  • Publication number: 20240017493
    Abstract: Techniques are described for consistently moving powder from a hopper into a trough for subsequent delivery into a build area of an additive fabrication system. A powder delivery apparatus may comprise a hopper, a trough, and a doser. The doser may be configured to rotate about an axis and may include a recess that, when the doser is rotated about the axis, travels into and out of the hopper and into and out of the trough. As a result, when powder is present in the hopper, the recess may carry powder from the hopper to the trough when the doser rotates. The trough and doser may be configured so that when the trough contains the desired amount of powder for recoating, the doser does not transfer additional material from the hopper into the trough. As a result, the amount of powder in the trough may be self-regulating.
    Type: Application
    Filed: June 20, 2023
    Publication date: January 18, 2024
    Applicant: Formlabs, Inc.
    Inventors: Luke Plummer, Maria Rosa Ruiz, Carlos Ruiz-Vargas, Robert Morgan, Joseph Johnson, Connor Evans
  • Publication number: 20230405938
    Abstract: According to some aspects, techniques are provided for identifying contamination in additive fabrication devices by measuring light interacting with the contamination using one or more light sensors. Contamination located between a light source and a target of a light source can affect the uniformity and intensity of the light source when incident upon the target. For instance, in an inverse stereolithography device, contamination located between a light source and a liquid photopolymer resin that is to be cured can affect the quality of the fabricated object when the light is scattered or blocked by the contamination. Identifying the presence of contamination between the light source and the liquid photopolymer resin and alerting the user prior to initiating a fabrication process may increase the quality of the resulting fabricated object and improve the user experience by saving time and photocurable liquid.
    Type: Application
    Filed: June 20, 2023
    Publication date: December 21, 2023
    Applicant: Formlabs, Inc.
    Inventors: Shane Wighton, Andrew M. Goldman, Henry Whitney, Justin Keenan
  • Patent number: 11845229
    Abstract: According to some aspects, a method of additive fabrication is provided wherein a plurality of layers are formed on a build platform, each layer contacting a container in addition to the build platform and/or a previously formed layer, the method comprising calculating, using at least one processor, one or more forces to be applied to a first layer of the plurality of layers subsequent to the first layer being formed, said calculating being based at least in part on a determined area of at least one portion of the first layer that overhangs a second layer of the plurality of layers, forming the first layer, the first layer being in contact with the container and in contact with a previously formed layer of the plurality of layers, and separating the first layer from the container by applying the calculated one or more forces to the first layer.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: December 19, 2023
    Assignee: Formlabs, Inc.
    Inventors: Ben FrantzDale, Steven Thomas, Nicholas M. Sohn
  • Patent number: 11840017
    Abstract: An improved additive fabrication device and a build platform are provided. The additive fabrication device is configured to form layers of material on a build surface. The additive fabrication device comprising: a build platform comprising: a rigid structure; an actuation structure attached to the rigid structure, wherein the actuation structure comprises one or more sheet handles and a flexible sheet, and wherein a first surface of the flexible sheet forms a build surface on which the additive fabrication device is configured to form layers of materials; and the one or more sheet handles are configured to be actuated to apply a force to the flexible sheet while at least a part of the actuation structure remains attached to the rigid structure, to deform at least a part of the flexible sheet away from the rigid structure.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: December 12, 2023
    Assignee: Formlabs, Inc.
    Inventors: Mark J. Frykman, Mark J. Ripoll, Lawrence Cheung, Nathan Jeffery, Yoav Reches, Derek J. Vilim
  • Publication number: 20230382053
    Abstract: A method for producing a three-dimensional (3D) object on an additive fabrication device includes receiving, by a computer, print instructions for the 3D object. The print instructions include a sequence of print maps, each print map corresponding to a sub-instruction for producing a respective cross-section of the 3D object. The method also includes exposing, by an energy source, resin stored in a resin container at a print plane according to a first print map of the sequence of print maps, and modifying a second print map of the sequence of print maps. The method further includes exposing, by the energy source, resin stored in the resin container at the print plane according to the modified second print map.
    Type: Application
    Filed: May 23, 2023
    Publication date: November 30, 2023
    Applicant: Formlabs Inc.
    Inventors: Maxim Lobovsky, Andrew Goldman
  • Patent number: 11820074
    Abstract: Techniques for illuminating a photocurable material within a build area of an additive fabrication device are described. According to some aspects, a light source is provided that can be moved alongside a build area, allowing light to be directed to any desired position within the build area by moving the light source. This configuration may also allow the distance from the light source to the build area to be substantially the same for each position across the build area by moving the light source whilst maintaining a fixed distance from the light source to the build volume. The described approach may allow for fabrication of larger parts in an additive fabrication device by expanding or eliminating the practical upper limit on the area of the build volume that can be imposed by use of a laser light source in such a device.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: November 21, 2023
    Assignee: Formlabs, Inc.
    Inventor: Andrew M. Goldman
  • Patent number: 11801646
    Abstract: Techniques for evaluating support for an object to be fabricated via an additive fabrication device are provided. In some embodiments, a three-dimensional representation of the object is obtained and a plurality of voxels corresponding to the representation of the object is generated. A first supportedness value may be assigned to a first voxel of the plurality of voxels based on an amount of support provided by a support structure to the first voxel, and a second supportedness value determined for a second voxel of the plurality of voxels, wherein the second voxel neighbors the first voxel, and wherein the second supportedness value is determined based on the first supportedness value of the first voxel and a weight value representing a transmission rate of supportedness through voxels of the plurality of voxels.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: October 31, 2023
    Assignee: Formlabs, Inc.
    Inventors: Shane Wighton, Maxim Lobovsky, Peter Schmidt-Nielsen
  • Publication number: 20230311419
    Abstract: Techniques are described for consistently moving powder from a hopper into a trough for subsequent delivery into a build area of an additive fabrication system. A powder conveyer may be arranged at least partially within the hopper and configured to be actuated to transfer powder to the trough. The powder conveyer may be formed as a screw conveyor, for example. Such techniques do not require complex closed-loop control systems and may be effective irrespective of the flowability of the powder. In at least some cases, there may be no production of excess powder because the amount of powder that is metered into the trough may be precisely controlled to be the amount needed for recoating.
    Type: Application
    Filed: March 28, 2023
    Publication date: October 5, 2023
    Applicant: Formlabs, Inc.
    Inventors: Luke Plummer, Maria Rosa Ruiz, Carlos Ruiz-Vargas, Robert Morgan, Joseph Johnson, Connor Evans
  • Patent number: 11745392
    Abstract: According to some aspects, a method is provided of casting an object from a mold, the method comprising obtaining a mold comprising a hollow shell of rigid material, the material comprising a thermoset polymer having a plurality of pores formed therein, providing a metal and/or ceramic slurry into an interior of the mold, exposing at least part of the mold to a low pressure environment so that a net flow of gas is produced from the interior of the mold into the low pressure environment. According to some aspects, a method of forming a porous mold is provided. According to some aspects, a photocurable liquid composition is provided, comprising a liquid photopolymer resin, particles of a solid material, in an amount between 30% and 60% by volume of the composition, and a water-soluble liquid.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: September 5, 2023
    Assignee: Formlabs, Inc.
    Inventors: Alex McCarthy, Maxim Lobovsky, Martin Galese
  • Patent number: 11745424
    Abstract: According to some aspects, degradation of material in a sintering additive fabrication process may be mitigated or avoided by fabricating parts within a chamber that includes one or more thermal breaks. The thermal break may be implemented using a variety of structures, but generally allows material in the chamber close to the surface to be maintained at different temperatures than the material further from the surface. For instance, as a result of the thermal break, parts located within the material of the chamber that were formed earlier during fabrication may be kept cooler to avoid damage to the parts yet the upper surface (sometimes called the “build surface”) of unconsolidated material may be heated enough so as to require minimal additional energy exposure to trigger consolidation.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: September 5, 2023
    Assignee: Formlabs, Inc.
    Inventors: Robb Morgan, Luke Plummer, Christopher Auld
  • Publication number: 20230250288
    Abstract: Methods and compositions for additive manufacturing of silicone parts are provided. The methods can use SLA printing techniques to print silicone parts that exhibit excellent hardness, tear strength and elongation at break. The parts can be produced by using low dosages of radiation. In various embodiments, the silicone compositions include a mercapto-derivatized polysiloxane having two or more functional groups, an alkenyl-derivatized polysiloxane, and a photo-initiator.
    Type: Application
    Filed: November 30, 2022
    Publication date: August 10, 2023
    Applicant: Formlabs Inc.
    Inventor: Alexander Philip Haring