Abstract: Synthetic base oil composition comprising dialkyl aromatic compound with alkyl side chain carbon number from C10 to C28, or preferably C11 to C24, or even more preferably, C12 to C18, wherein the branching characteristics of the alkyl side chain has a total methyl number (TMN) determined by C13 NMR spectroscopy to be from more than 2.1 to less than 3.5, or preferably from 2.15 to 3.25, or even more preferably from 2.2 to 3.0, or a branching index (BI) from more than 0.1 to less than 1.5, or more preferably, 0.15 to 1.25, or even more preferably, 0.2 to 1.0. The synthetic base oil composition has a combination of high viscometric index, low volatility, superior low temperature properties, and improved thermal/oxidation stability, and is particularly suitable to be used as a premium synthetic base stock, second base oil component, or additive for lubricant and additive package applications.
Abstract: A method for synthesizing the all-silica zeolite beta with small crystal size is disclosed. This method comprises the steps of: (a) forming a reaction mixture comprising (1) a source of silicon dioxide (SiO2), (2) a source of fluoride ions (F?), (3) a source of tetraethylammonium cations (TEA+), and (4) water (H2O), at predetermined mole ratios of the source of silicon dioxide, the source of fluoride ions, the source of tetraethylammonium cations, and water; (b) crystallizing the reaction mixture; and (c) recovering the crystalline material formed, wherein the pH of the mixture before crystallization has a value of 6 to 9, and the pH of the mixture after crystallization has a value of 6 to 8. This improved method gives a fast and efficient way of synthesis of all-silica zeolite beta with an average crystal size of less than 5 ?m.
Abstract: Synthetic base oil composition comprising dialkyl aromatic compound with alkyl side chain carbon number from C10 to C28, or preferably C11 to C24, or even more preferably, C12 to C18, wherein the branching characteristics of the alkyl side chain has a total methyl number (TMN) determined by C13 NMR spectroscopy to be from more than 2.1 to less than 3.5, or preferably from 2.15 to 3.25, or even more preferably from 2.2 to 3.0, or a branching index (BI) from more than 0.1 to less than 1.5, or more preferably, 0.15 to 1.25, or even more preferably, 0.2 to 1.0. The synthetic base oil composition has a combination of high viscometric index, low volatility, superior low temperature properties, and improved thermal/oxidation stability, and is particularly suitable to be used as a premium synthetic base stock, second base oil component, or additive for lubricant and additive package applications.