Abstract: Electrolyte for an electrochemical battery cell, containing sulfur dioxide and a conductive salt. Improved characteristics of a cell filled with the electrolyte are achieved in that the molar concentration of hydroxide groups in the electrolyte is at most 50 mmol per liter and the molar concentration of chlorosulfonate groups in the electrolyte is at most 350 mmol per liter.
Type:
Application
Filed:
March 12, 2013
Publication date:
August 7, 2014
Applicant:
FORTU INTELLECTUAL PROPERTY AG
Inventors:
Laurent Zinck, Christian Pszolla, Claus Dambach
Abstract: A battery module comprises a battery module housing with parts made of plastic and a plurality of prismatic battery cells that have a cell housing with four side walls. Two parallel side walls are larger than the two other side walls. The electrolyte of the battery cells is preferably SO2-based.
Abstract: Rechargeable lithium battery cell having a housing, a positive electrode, a negative electrode and an electrolyte containing a conductive salt, wherein the electrolyte comprises SO2 and the positive electrode contains an active material in the composition LixM?yM?z(XO4)aFb, wherein M? is at least one metal selected from the group consisting of the elements Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn, M? is at least one metal selected from the group consisting of the metals of the groups II A, III A, IV A, V A, VI A, IB, IIB, IIIB, IVB, VB, VIB and VIIIB, X is selected from the group consisting of the elements P, Si and S, x is greater than 0, y is greater than 0, z is greater than or equal to 0, a is greater than 0 and b is greater than or equal to 0.
Abstract: The invention relates to a rechargeable electrochemical battery cell having a negative electrode, an electrolyte, and a positive electrode. The negative electrode comprises an electronically conductive substrate (12) at which an active metal (24) of the negative electrode is deposited by electrolysis during the charging of the cell. A porous structure (13) that contains the active mass (17) of the positive electrode is arranged in the vicinity of the substrate (12) of the negative electrode (5) in such a manner that the active metal (17) of the negative electrode that is deposited during the charging of the cell (3) penetrates into the pores (14) of the porous structure (13) comprising the active mass of the positive electrode and is deposited further therein, at least in part, in metallic form.