Patents Assigned to Fractilia, LLC
-
Patent number: 11004654Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: GrantFiled: December 30, 2019Date of Patent: May 11, 2021Assignee: Fractilia, LLCInventor: Chris Mack
-
Publication number: 20210082658Abstract: A method is disclosed. The method includes receiving measured linescan information describing a pattern structure of a feature, applying the received measured linescan information to an inverse linescan model that relates measured linescan information to feature geometry information, identifying, based at least in part on the applying the received measured linescan model to the inverse linescan model, feature geometry information that describes a feature that would produce a linescan corresponding to the received measured linescan information, determining, at least in part using the inverse linescan model, feature edge positions of the identified feature, and analyzing the feature edge positions to detect the presence or absence of defects in the pattern structure.Type: ApplicationFiled: November 24, 2020Publication date: March 18, 2021Applicant: FRACTILIA, LLCInventor: Chris Mack
-
Publication number: 20210066027Abstract: In one embodiment, a method includes receiving measured linescan information describing a pattern structure of a feature, applying the received measured linescan information to an inverse linescan model that relates measured linescan information to feature geometry information, and identifying, based at least in part on the applying the received measured linescan model to the inverse linescan model, feature geometry information that describes a feature that would produce a linescan corresponding to the received measured linescan information. The method also includes determining, at least in part using the inverse linescan model, feature edge positions of the identified feature, analyzing the feature edge positions to determine errors in the manufacture of the pattern structure, and controlling a lithography tool based on the analysis of the feature edge positions.Type: ApplicationFiled: November 13, 2020Publication date: March 4, 2021Applicant: FRACTILIA, LLCInventor: Chris Mack
-
Publication number: 20200211813Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: ApplicationFiled: December 30, 2019Publication date: July 2, 2020Applicant: FRACTILIA, LLCInventor: Chris MACK
-
Patent number: 10665418Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: GrantFiled: February 20, 2019Date of Patent: May 26, 2020Assignee: FRACTILIA, LLCInventor: Chris Mack
-
Patent number: 10664955Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method includes generating, using an imaging device, a set of one or more images, each including an instance of a feature within a respective pattern structure. The method also includes detecting edges of the features within the pattern structure of each image using an inverse linescan model, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure provided as part of a training data set to a machine learning model.Type: GrantFiled: May 17, 2019Date of Patent: May 26, 2020Assignee: FRACTILIA, LLCInventor: Chris Mack
-
Patent number: 10665417Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: GrantFiled: February 20, 2019Date of Patent: May 26, 2020Assignee: FRACTILIA, LLCInventor: Chris Mack
-
Patent number: 10656532Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: GrantFiled: February 22, 2019Date of Patent: May 19, 2020Assignee: FRACTILIA, LLCInventor: Chris Mack
-
Patent number: 10648801Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: GrantFiled: February 22, 2019Date of Patent: May 12, 2020Assignee: FRACTILIA, LLCInventor: Chris Mack
-
Publication number: 20200118789Abstract: An edge detection system is provided that generates a scanning electron microscope (SEM) linescan image of a pattern structure including a feature with edges that require detection. The edge detection system includes an inverse linescan model tool that receives measured linescan information for the feature from the SEM. In response, the inverse linescan model tool provides feature geometry information that includes the position of the detected edges of the feature.Type: ApplicationFiled: December 16, 2019Publication date: April 16, 2020Applicant: FRACTILIA, LLCInventor: Chris MACK
-
Patent number: 10522322Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: GrantFiled: December 12, 2018Date of Patent: December 31, 2019Assignee: Fractilia, LLCInventor: Chris Mack
-
Patent number: 10510509Abstract: An edge detection system is provided that generates a scanning electron microscope (SEM) linescan image of a pattern structure including a feature with edges that require detection. The edge detection system includes an inverse linescan model tool that receives measured linescan information for the feature from the SEM. In response, the inverse linescan model tool provides feature geometry information that includes the position of the detected edges of the feature.Type: GrantFiled: December 17, 2018Date of Patent: December 17, 2019Assignee: Fractilia, LLCInventor: Chris Mack
-
Patent number: 10488188Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: GrantFiled: December 12, 2018Date of Patent: November 26, 2019Assignee: Fractilia, LLCInventor: Chris Mack
-
Publication number: 20190272623Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method includes generating, using an imaging device, a set of one or more images, each including an instance of a feature within a respective pattern structure. The method also includes detecting edges of the features within the pattern structure of each image using an inverse linescan model, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure provided as part of a training data set to a machine learning model.Type: ApplicationFiled: May 17, 2019Publication date: September 5, 2019Applicant: FRACTILIA, LLCInventor: Chris MACK
-
Publication number: 20190186909Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: ApplicationFiled: February 22, 2019Publication date: June 20, 2019Applicant: FRACTILIA, LLCInventor: Chris MACK
-
Publication number: 20190187570Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: ApplicationFiled: February 22, 2019Publication date: June 20, 2019Applicant: FRACTILIA, LLCInventor: Chris MACK
-
Publication number: 20190180977Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: ApplicationFiled: February 20, 2019Publication date: June 13, 2019Applicant: FRACTILIA, LLCInventor: Chris MACK
-
Publication number: 20190180976Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: ApplicationFiled: February 20, 2019Publication date: June 13, 2019Applicant: FRACTILIA, LLCInventor: Chris MACK
-
Publication number: 20190164303Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.Type: ApplicationFiled: December 12, 2018Publication date: May 30, 2019Applicant: FRACTILIA, LLCInventor: Chris MACK
-
Publication number: 20190139736Abstract: An edge detection system is provided that generates a scanning electron microscope (SEM) linescan image of a pattern structure including a feature with edges that require detection. The edge detection system includes an inverse linescan model tool that receives measured linescan information for the feature from the SEM. In response, the inverse linescan model tool provides feature geometry information that includes the position of the detected edges of the feature.Type: ApplicationFiled: December 17, 2018Publication date: May 9, 2019Applicant: FRACTILIA, LLCInventor: Chris MACK