Patents Assigned to Fractilia, LLC
  • Patent number: 11004654
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: May 11, 2021
    Assignee: Fractilia, LLC
    Inventor: Chris Mack
  • Publication number: 20210082658
    Abstract: A method is disclosed. The method includes receiving measured linescan information describing a pattern structure of a feature, applying the received measured linescan information to an inverse linescan model that relates measured linescan information to feature geometry information, identifying, based at least in part on the applying the received measured linescan model to the inverse linescan model, feature geometry information that describes a feature that would produce a linescan corresponding to the received measured linescan information, determining, at least in part using the inverse linescan model, feature edge positions of the identified feature, and analyzing the feature edge positions to detect the presence or absence of defects in the pattern structure.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 18, 2021
    Applicant: FRACTILIA, LLC
    Inventor: Chris Mack
  • Publication number: 20210066027
    Abstract: In one embodiment, a method includes receiving measured linescan information describing a pattern structure of a feature, applying the received measured linescan information to an inverse linescan model that relates measured linescan information to feature geometry information, and identifying, based at least in part on the applying the received measured linescan model to the inverse linescan model, feature geometry information that describes a feature that would produce a linescan corresponding to the received measured linescan information. The method also includes determining, at least in part using the inverse linescan model, feature edge positions of the identified feature, analyzing the feature edge positions to determine errors in the manufacture of the pattern structure, and controlling a lithography tool based on the analysis of the feature edge positions.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 4, 2021
    Applicant: FRACTILIA, LLC
    Inventor: Chris Mack
  • Publication number: 20200211813
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Application
    Filed: December 30, 2019
    Publication date: July 2, 2020
    Applicant: FRACTILIA, LLC
    Inventor: Chris MACK
  • Patent number: 10665418
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: May 26, 2020
    Assignee: FRACTILIA, LLC
    Inventor: Chris Mack
  • Patent number: 10664955
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method includes generating, using an imaging device, a set of one or more images, each including an instance of a feature within a respective pattern structure. The method also includes detecting edges of the features within the pattern structure of each image using an inverse linescan model, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure provided as part of a training data set to a machine learning model.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: May 26, 2020
    Assignee: FRACTILIA, LLC
    Inventor: Chris Mack
  • Patent number: 10665417
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: May 26, 2020
    Assignee: FRACTILIA, LLC
    Inventor: Chris Mack
  • Patent number: 10656532
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 19, 2020
    Assignee: FRACTILIA, LLC
    Inventor: Chris Mack
  • Patent number: 10648801
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 12, 2020
    Assignee: FRACTILIA, LLC
    Inventor: Chris Mack
  • Publication number: 20200118789
    Abstract: An edge detection system is provided that generates a scanning electron microscope (SEM) linescan image of a pattern structure including a feature with edges that require detection. The edge detection system includes an inverse linescan model tool that receives measured linescan information for the feature from the SEM. In response, the inverse linescan model tool provides feature geometry information that includes the position of the detected edges of the feature.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Applicant: FRACTILIA, LLC
    Inventor: Chris MACK
  • Patent number: 10522322
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: December 31, 2019
    Assignee: Fractilia, LLC
    Inventor: Chris Mack
  • Patent number: 10510509
    Abstract: An edge detection system is provided that generates a scanning electron microscope (SEM) linescan image of a pattern structure including a feature with edges that require detection. The edge detection system includes an inverse linescan model tool that receives measured linescan information for the feature from the SEM. In response, the inverse linescan model tool provides feature geometry information that includes the position of the detected edges of the feature.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: December 17, 2019
    Assignee: Fractilia, LLC
    Inventor: Chris Mack
  • Patent number: 10488188
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: November 26, 2019
    Assignee: Fractilia, LLC
    Inventor: Chris Mack
  • Publication number: 20190272623
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method includes generating, using an imaging device, a set of one or more images, each including an instance of a feature within a respective pattern structure. The method also includes detecting edges of the features within the pattern structure of each image using an inverse linescan model, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure provided as part of a training data set to a machine learning model.
    Type: Application
    Filed: May 17, 2019
    Publication date: September 5, 2019
    Applicant: FRACTILIA, LLC
    Inventor: Chris MACK
  • Publication number: 20190186909
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 20, 2019
    Applicant: FRACTILIA, LLC
    Inventor: Chris MACK
  • Publication number: 20190187570
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 20, 2019
    Applicant: FRACTILIA, LLC
    Inventor: Chris MACK
  • Publication number: 20190180977
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Application
    Filed: February 20, 2019
    Publication date: June 13, 2019
    Applicant: FRACTILIA, LLC
    Inventor: Chris MACK
  • Publication number: 20190180976
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Application
    Filed: February 20, 2019
    Publication date: June 13, 2019
    Applicant: FRACTILIA, LLC
    Inventor: Chris MACK
  • Publication number: 20190164303
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Application
    Filed: December 12, 2018
    Publication date: May 30, 2019
    Applicant: FRACTILIA, LLC
    Inventor: Chris MACK
  • Publication number: 20190139736
    Abstract: An edge detection system is provided that generates a scanning electron microscope (SEM) linescan image of a pattern structure including a feature with edges that require detection. The edge detection system includes an inverse linescan model tool that receives measured linescan information for the feature from the SEM. In response, the inverse linescan model tool provides feature geometry information that includes the position of the detected edges of the feature.
    Type: Application
    Filed: December 17, 2018
    Publication date: May 9, 2019
    Applicant: FRACTILIA, LLC
    Inventor: Chris MACK