Patents Assigned to FRED
  • Publication number: 20230213521
    Abstract: The application discloses in vitro methods for diagnosing lung cancer in a subject, wherein the method comprises detecting at least one biomarker selected from the group consisting of Rho GDP dissociation inhibitor beta (ARHGDIB), alpha-tubulin 4A (TUBA4A), glutathione S-transferase omega 1 (GSTO1), filamin A (FLNA), peroxiredoxin 6 (PRDX6) and cadherin 13 (CDH13) in a biological sample from the subject, and kits for measuring said at least one biomarker.
    Type: Application
    Filed: April 28, 2021
    Publication date: July 6, 2023
    Applicants: Luxembourg Institute of Health (LIH), Fred Hutchinson Cancer Center, The Translational Genomics Research Institute (TGEN)
    Inventors: Victoria EL KHOURY, Anna Elisabeth SCHRITZ, Yeoun Jin KIM, Guy BERCHEM, Amanda PAULOVICH, Jeffrey WHITEAKER, Konstantinos PETRITIS, Patrick PIRROTTE, Tony TEGELER
  • Publication number: 20230212266
    Abstract: The disclosure provides antibodies, antibody fragments, and antibody derivatives that bind to the viral envelope spike protein (S2P) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and related compositions, and methods. In some embodiments, the antibodies, antibody fragments, and antibody derivatives bind to an epitope of the receptor binding domain (RBD) of SARS-CoV-2.
    Type: Application
    Filed: April 26, 2021
    Publication date: July 6, 2023
    Applicant: Fred Hutchinson Cancer Center
    Inventors: Leonidas Stamatatos, Andrew McGuire, Marie Pancera
  • Publication number: 20230201262
    Abstract: Methods for treating malignancies such as hematological malignancies, including myeloma, that are resistant to tissue transplant treatments and that can be characterized by an increased risk of relapse or graft-versus-host disease (GVHD). A method for treatment includes transplanting a tissue that includes T cells to a subject, enriching for a stem-like memory T cell phenotype in the T cells, and stimulating the T cells to enhance a graft-versus-tumor (GVT) response of the T cells. The enriching for the stem-like memory T cell phenotype can include depletion of exhausted alloreactive T cells with a post-transplant cyclophosphamide (PT-Cy) treatment and the stimulating the T cells can include an agonist immunotherapy, such as a decoy-resistant IL-18 (DR-18) treatment, to enhance the GVT response.
    Type: Application
    Filed: December 6, 2022
    Publication date: June 29, 2023
    Applicant: Fred Hutchinson Cancer Center
    Inventors: Simone Minnie, Geoffrey Hill
  • Publication number: 20230190810
    Abstract: A suite of novel anti-CD33 antibodies is described. The provided antibodies are pan-binders, binding the C2-set Ig-like domain in the presence or absence of the V-set Ig-like domain of CD33; are C2-set specific binders, binding the C2-set Ig-like domain only in the absence of the V-set Ig-like domain of CD33; or are V-set binders, binding the V-set Ig-like domain of CD33. The antibodies provide novel therapeutic and diagnostic tools against CD33-related disorders, such as acute myeloid leukemia (AML).
    Type: Application
    Filed: March 31, 2021
    Publication date: June 22, 2023
    Applicant: Fred Hutchinson Cancer Center
    Inventors: Roland B. Walter, George S. Laszlo
  • Publication number: 20230190707
    Abstract: The disclosure provides methods of enhancing susceptibility of neoplastic, transformed, and/or cancer cells (“cancer cells”) to immunotherapeutic agents. The methods comprise contacting the cancer cell with an agent that modulates RNA splicing. In some embodiments, the method further comprise contacting the cancer cell with the immunotherapeutic agent, such as an immune checkpoint inhibitor. The disclosure also provides compositions and/or methods for treating a subject with cancer. In some embodiments, the disclosure provides compositions and methods for combination therapy that comprises administering to a subject with cancer an effective amount of an agent that modulates RNA splicing and a therapeutically effective amount of an immunotherapeutic agent, such as an immune checkpoint inhibitor.
    Type: Application
    Filed: May 14, 2021
    Publication date: June 22, 2023
    Applicants: Fred Hutchinson Cancer Center, Memorial Sloan Kettering Cancer Center
    Inventors: Robert K. Bradley, Omar Abdel-Wahab, Sydney Lu
  • Publication number: 20230159895
    Abstract: Strategies to assess and/or produce cell populations with predictive engraftment potential are described. The cell populations can be used for a variety of therapeutic and research purposes.
    Type: Application
    Filed: November 18, 2022
    Publication date: May 25, 2023
    Applicant: Fred Hutchinson Cancer Center
    Inventors: Stefan Radtke, Hans-Peter Kiem, Jennifer E. Adair
  • Publication number: 20230159920
    Abstract: The current disclosure relates to methods and compositions for increasing functional expression of BRD9 in a cell. The methods and compositions can be incorporated into methods for treating cancer through the administration of BRD9 activating therapies. Accordingly, aspects of the disclosure relate to compositions and methods for treating cancer, a pre-malignant disease, or a dysplastic disease in a subject. The method can comprise administering a BRD9 activating therapy to the subject.
    Type: Application
    Filed: June 25, 2020
    Publication date: May 25, 2023
    Applicants: Fred Hutchinson Cancer Research Center, Memorial Sloan Kettering Cancer Center
    Inventors: Robert K. Bradley, Omar Abdel-Wahab, Daichi Inoue
  • Publication number: 20230151101
    Abstract: Embodiments of the present disclosure are directed to methods and compositions for inhibiting cytomegalovirus (CMV) in a transplant recipient. In some embodiments, the methods are directed to inhibiting CMV reactivation in a transplant recipient with a CMV-seropositive serological status, the method comprising administering an effective amount of a compound to block IL-6 function. In some embodiments, the methods are directed to preventing CMV infection in a transplant recipient, wherein a transplant donor has a CMV-seropositive serological status, the method comprising administering an effective amount of a compound to block IL-6 function. In still other embodiments, a composition comprising a compound to block IL-6 function is administered to a transplant recipient with a CMV-seropositive serological status to prevent CMV reactivation.
    Type: Application
    Filed: January 11, 2022
    Publication date: May 18, 2023
    Applicant: Fred Hutchinson Cancer Research Center
    Inventors: Geoffrey Hill, Siok Tey, Mariapia Degli-Esposti
  • Publication number: 20230151094
    Abstract: Chimeric antigen receptors (CARs) with binding domains derived from a novel suite of CD33-binding antibodies are described. The CARs include optimized short and intermediate spacer regions. The current disclosure also provides methods of cell expansion/activation processes utilizing IL-2, IL-7, IL-15, and/or IL-21 that improve cellular proliferation and cell lysis of the CARs as described.
    Type: Application
    Filed: March 31, 2021
    Publication date: May 18, 2023
    Applicant: Fred Hutchinson Cancer Center
    Inventors: Cameron J. Turtle, Roland B. Walter, George S. Laszlo, Salvatore Fiorenza
  • Patent number: 11648290
    Abstract: Peptides that home, target, migrate to, are directed to, are retained by, or accumulate in and/or binds to the cartilage of a subject are disclosed. Pharmaceutical compositions and uses for peptides or peptide-active agent complexes comprising such peptides are also disclosed. Such compositions can be formulated for targeted delivery of a drug to a target region, tissue, structure or cell in the cartilage. Targeted compositions of the disclosure can deliver peptide or peptide-active agent complexes to target regions, tissues, structures or cells targeted by the peptide.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: May 16, 2023
    Assignees: FRED HUTCHINSON CANCER CENTER, BLAZE BIOSCIENCE, INC.
    Inventors: James Olson, Andrew David Strand, Emily June Girard, Roland Strong, Christopher Mehlin, Colin Correnti, Natalie Nairn
  • Publication number: 20230144405
    Abstract: A suite of novel human anti-CD33 antibodies is described. The provided antibodies are pan-binders, binding the C2-set Ig-like domain in the presence or absence of the V-set Ig-like domain of CD33 or are V-set binders, binding the V-set Ig-like domain of CD33. The antibodies provide novel therapeutic and diagnostic tools against CD33-related disorders, such as acute myeloid leukemia (AML).
    Type: Application
    Filed: March 31, 2021
    Publication date: May 11, 2023
    Applicant: Fred Hutchinson Cancer Center
    Inventors: Roland B. Walter, George S. Laszlo
  • Publication number: 20230133243
    Abstract: The present disclosure provides, among other things, immune suppression regimens for in vivo gene therapy and uses thereof. In various embodiments of the present disclosure, in vivo gene therapy includes delivery of at least one exogenous coding nucleic acid sequence to a stem cell of the subject. Success of in vivo gene therapy can be inhibited or reduced by immunotoxicity. The present disclosure provides compositions and methods, including among other things immune suppression regimens, that reduce immunotoxicity of in vivo gene therapy, e.g., in vivo gene therapy including administration of a viral gene therapy vector to a subject.
    Type: Application
    Filed: April 12, 2021
    Publication date: May 4, 2023
    Applicants: Fred Hutchinson Cancer Center, University of Washington
    Inventors: Andre Lieber, Hans-Peter Kiem
  • Publication number: 20230103618
    Abstract: In some aspects, the disclosure provides antibody-based reagents that specifically bind a tropomyosin receptor kinase B (TrkB) isoform that is associated with cancers. In some embodiments, the isoform is TrkB.T1. In some embodiments, the antibody or antibody derivative specifically binds a polypeptide comprising, consisting essentially of, or consisting of the sequence FVLFHKIPLDG (SEQ ID NO:1), or a sequence with at least 80% sequence identity thereto. In other aspects, the disclosure provides methods of producing the antibody or antibody derivative, related hybridomas, and methods of detecting and treating cancers incorporating use of the disclosed antibody reagents.
    Type: Application
    Filed: January 29, 2021
    Publication date: April 6, 2023
    Applicant: Fred Hutchinson Cancer Center
    Inventors: Eric Holland, Siobhan Pattwell
  • Publication number: 20230097658
    Abstract: The present disclosure describes an immunotherapy delivery hydrogel system. The immunotherapy delivery hydrogel system can be degradable and can release therapeutic agents at a tunable rate, and in a controlled manner. The immunotherapy delivery hydrogel system includes a hydrogel matrix and cancer therapeutic agent(s) associated with the hydrogel matrix. The hydrogel system can further include tumor cell-attractant(s) conjugated to the hydrogel matrix. The tumor cell-attractant(s) and the cancer therapeutic agent(s) act synergistically to treat cancer.
    Type: Application
    Filed: February 26, 2021
    Publication date: March 30, 2023
    Applicants: FRED HUTCHINSON CANCER RESEARCH CENTER, UNIVERSITY OF WASHINGTON
    Inventors: James Olson, Eric Nealy, Cole DeForest, Andrew Mhyre
  • Patent number: 11603544
    Abstract: Genomic safe harbors (GSH) for genetic therapies in human stem cells and engineered nanoparticles to provide targeted genetic therapies are described. The GSH and/or associated nanoparticles can be used to safely and efficiently treat a variety of genetic, infectious, and malignant diseases.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: March 14, 2023
    Assignee: Fred Hutchinson Cancer Center
    Inventors: Jennifer E. Adair, Reza Shahbazi
  • Patent number: 11578118
    Abstract: Systems and methods to genetically modify B cells to express selected antibodies are described. The systems and methods can be used to: obviate the need for classical vaccinations; provide protection against infectious agents for which no vaccinations are currently available; provide protection against infectious agents when patients are otherwise immune-suppressed; and/or provide a benefit provided by a therapeutic antibody, such as in the treatment of autoimmune disorders.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: February 14, 2023
    Assignee: Fred Hutchinson Cancer Center
    Inventors: Justin J. Taylor, Howell F. Moffett
  • Patent number: 11566061
    Abstract: Systems and methods to increase the efficacy of vaccines that require or are rendered more effective with T cell mediated immunity are described. The systems and methods utilize polynucleotides that genetically modify T cells to express a T cell receptor specific for an administered vaccine antigen.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: January 31, 2023
    Assignee: Fred Hutchinson Cancer Center
    Inventor: Matthias Stephan
  • Patent number: 11548923
    Abstract: Described herein are peptides and variants and mutants thereof capable of interacting with TEAD, disrupting the HIPPO pathway, or modulating the activity or function of TEAD interactions in a cell. Pharmaceutical compositions and uses of peptides, as well as methods of designing and manufacturing such peptides, to treat cancer, tumor, or any other disease/condition associated with a dysregulated HIPPO pathway or uncontrolled cell growth are also described herein.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: January 10, 2023
    Assignee: FRED HUTCHINSON CANCER CENTER
    Inventors: James M. Olson, Zachary Crook, Philip H. Bradley
  • Publication number: 20220411472
    Abstract: Circular handed alpha-helical repeat proteins are described. The repeat proteins have a number of uses as scaffolds for geometrically precise, arrayed presentation of cell-signaling or immune-related protein and peptide epitopes, as well as numerous other therapeutic, diagnostic, and nanotechnological uses.
    Type: Application
    Filed: July 2, 2020
    Publication date: December 29, 2022
    Applicant: Fred Hutchinson Cancer Center
    Inventors: Barry L. Stoddard, Philip Bradley, Colin E. Correnti
  • Patent number: 11534461
    Abstract: The present disclosure provides binding proteins and TCRs with high affinity and specificity against Merkel cell polyomavirus T antigen epitopes or peptides, T cells expressing such high affinity Merkel cell polyomavirus T antigen specific TCRs, nucleic acids encoding the same, and compositions for use in treating Merkel cell carcinoma.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: December 27, 2022
    Assignees: FRED HUTCHINSON CANCER CENTER, UNIVERSITY OF WASHINGTON
    Inventors: Aude G. Chapuis, Paul T. Nghiem, Megan S. McAfee, Natalie J. Miller, Kelly Garneski Paulson, David Martin Koelle, Thomas M. Schmitt, Candice Church