Patents Assigned to Freeport Minerals Corporation
  • Publication number: 20240127135
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Publication number: 20240124951
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Patent number: 11948103
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Grant
    Filed: June 22, 2023
    Date of Patent: April 2, 2024
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Patent number: 11932919
    Abstract: The present disclosure relates to a metal recovery process comprising a solvent extraction process. In an exemplary embodiment, the solution extraction system comprises a plant with a first and second circuit. A high-grade pregnant leach solution (“HGPLS”) is provided to the first and second circuit, and a low-grade pregnant leach solution (“LGPLS”) is provided to the second circuit. The first circuit produces a rich electrolyte, which can be forwarded to a primary metal recovery, and a low-grade raffinate, which can be forwarded to a secondary metal recovery process. The second circuit produces a rich electrolyte, which can also be forwarded to the primary metal recovery process. The first and second circuits are in fluid communication with each other.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: March 19, 2024
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Jason M Morgan, Barbara J Savage, David G Meadows, Wayne W Hazen
  • Publication number: 20240052514
    Abstract: A method of acid mist suppression in copper electrowinning is described. In various embodiments, at least one liquid licorice root extract, powdered licorice root extract, or reconstituted licorice extract is added in an amount sufficient to the acidic electrolyte solution of the copper electrowinning process to suppress acid mist from the acidic electrolyte solution during the copper electrowinning process. In various embodiments, combinations of licorice extract and surfactant show synergies in acid mist suppression during copper electrowinning.
    Type: Application
    Filed: October 23, 2023
    Publication date: February 15, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Scot Philip Sandoval, Stanberg Lee Tallman, William Duane Sanders, Ephrem Lemlem Gebrehiwot, Aron Tyab
  • Patent number: 11893519
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Grant
    Filed: April 25, 2023
    Date of Patent: February 6, 2024
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Publication number: 20240037462
    Abstract: The system may include a secondary irrigation feature that determines a percent of overlap of each of a plurality of submodules in a first lift over each of a plurality of submodules in a second lift and adjusts at least one of leaching operations or a leaching model based on the total tonnage weighted average of metal in the second lift. The method may further comprise determining an acid gap based on a difference between total acid given and total acid consumption; and further adjusting at least one of the leaching operations or the leaching model based on the acid gap. The method may further comprise determining a percentage of compacted material based on the material that is compacted and irrigated divided by the material that is irrigated; and further adjusting at least one of the leaching operations or the leaching model based on the percentage of compacted material.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 1, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Steven Chad Richardson, Raquel Crossman, Cristian Caro, Kevin Cheng, Rosemary D. Blosser, Amelia Briggs
  • Publication number: 20240024884
    Abstract: A drum assembly for a ball mill system may comprise: a drum having a first flange extending axially forward from a first radial wall, a second flange extending axially aft from a second radial wall, and a cylinder shell extending axially from a first radially outer end of the first radial wall to a second radially outer end of the second radial wall; a frame coupled to the first flange; and an inlet liner coupled to the frame, the inlet liner comprising a plurality of inlet segments disposed circumferentially adjacent to each other, the inlet liner defining an inlet radius for the drum assembly.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventor: Dale Coray
  • Publication number: 20240026493
    Abstract: The present disclosure provides a method comprising determining an ore map for a heap to identify a location of a recoverable metal-bearing material in the heap, wherein the metal-bearing material comprises iron and at least one other metal value, delivering a leaching solution from a leaching solution source to a leaching solution regulating system, wherein the leaching solution comprises an effective amount of citric acid and hydrogen peroxide, regulating at least one of a pressure, a mass flow rate, or a volumetric flow rate of the leaching solution to achieve a target operational condition, wherein the target operational condition is selected to optimize a set of operational parameters to maximize recovery of the at least one other metal value, delivering the leaching solution at the target operational condition from the leaching solution regulating system to the subsurface leaching distribution system, and delivering the leaching solution at the target operational condition from the subsurface leaching d
    Type: Application
    Filed: October 3, 2023
    Publication date: January 25, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Sarah Lyons, Joanna M. Robertson, Casey J. Clayton, Richard Melecio Sanchez, Raquel Crossman, Luciano Kiniti Issoe, Tianfang Ni, Oleksandr Klesov, Luke Gerdes, Muneeb Alam, Chase Zenner, John Warren Dean, JR.
  • Publication number: 20240026492
    Abstract: The present disclosure provides a method comprising determining an ore map for a heap to identify a location of a recoverable metal value in the heap, delivering a leaching solution from a leaching solution source to a leaching solution regulating system, regulating at least one of a pressure, a mass flow rate, or a volumetric flow rate of the leaching solution to achieve a first target operational condition, wherein the first target operational condition is selected to optimize a set of operational parameters to maximize recovery of the recoverable metal value, delivering the leaching solution at the first target operational condition from the leaching solution regulating system to a subsurface leaching distribution system, and delivering the leaching solution at the first target operational condition from the subsurface leaching distribution system to the location of the recoverable metal value under a surface of the heap to leach and recover at least one metal value.
    Type: Application
    Filed: October 3, 2023
    Publication date: January 25, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Casey J. Clayton, Richard Melecio Sanchez, Raquel Crossman, Luciano Kiniti Issoe, Tianfang Ni, Oleksandr Klesov, Luke Gerdes, Muneeb Alam, Joanna M. Robertson, Chase Zenner, John Warren Dean, JR.
  • Publication number: 20230419249
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Travis Gaddie, Dana Geislinger, Margaret Alden Tinsley, Luciano Kiniti Issoe, Tianfang Ni, Muneeb Alam, Luke Gerdes, Oleksandr Klesov, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Cory A. Demieville, Robyn Freeman
  • Publication number: 20230419198
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: April 25, 2023
    Publication date: December 28, 2023
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Publication number: 20230419197
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: April 25, 2023
    Publication date: December 28, 2023
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Publication number: 20230419226
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Oleksandr Klesov, Luke Gerdes, Dana Geislinger, Margaret Alden Tinsley, Robyn Freeman, Akaash Sanyal, Muneeb Alam, Raquel Crossman, Travis Gaddie, Steven Chad Richardson, Tianfang Ni, Cory A. Demieville, Luciano Kiniti Issoe
  • Publication number: 20230417724
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Cory A. Demieville, Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Publication number: 20230419132
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Luciano Kiniti Issoe, Tianfang Ni, Oleksandr Klesov, Luke Gerdes, Raquel Crossman, Muneeb Alam, Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Steven Chad Richardson, Akaash Sanyal, Cory A. Demieville, Robyn Freeman
  • Publication number: 20230418269
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Steven Chad Richardson, Robyn Freeman, Luke Gerdes, Margaret Alden Tinsley, Dana Geislinger, Akaash Sanyal, Travis Gaddie, Muneeb Alam, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Oleksandr Klesov, Luciano Kiniti Issoe
  • Publication number: 20230419199
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: June 22, 2023
    Publication date: December 28, 2023
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Publication number: 20230417552
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Luciano Kiniti Issoe, Tianfang Ni, Luke Gerdes, Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Cory A. Demieville, Robyn Freeman, Oleksandr Klesov
  • Publication number: 20230417570
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Margaret Alden Tinsley, Akaash Sanyal, Robyn Freeman, Travis Gaddie, Muneeb Alam, Steven Chad Richardson, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Oleksandr Klesov, Luciano Kiniti Issoe