Patents Assigned to Freewing Aerial Robotics Corporation
  • Patent number: 5941478
    Abstract: A mechanism for quickly removing and installing the free wings and/or the tail booms of a freewing aircraft to the fuselage. The fuselage includes a free wing cross tube extending transversely through the fuselage at the spanwise axis, and each of the left and right free wings includes a support tube disposed therein, also along the spanwise axis, with a portion of the wing structural tube being received within the fuselage cross tube. A quick-release pin is insertable in holes disposed in both the structural tube and the cross tube when the holes are placed in alignment. A second cross tube extends transversely through the rear end of the fuselage at the tail boom pivot axis. At least a portion of each tail boom member is disposed in surrounding relationship to the cross tube. In a preferred embodiment, a quick-release pin is insertable in holes disposed in both the tail boom member portion and the cross tube when the holes are placed in alignment.
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: August 24, 1999
    Assignee: Freewing Aerial Robotics Corporation
    Inventor: Hugh Schmittle
  • Patent number: 5863013
    Abstract: An improved VTOL/STOL free wing aircraft providing damping and absorption of shock landing loads upon landing. A pair of resilient struts is provided, projecting forwardly from the trailing edge of either side of the fuselage when the fuselage is tilted. Preferably, the aircraft includes a pair of articulated tail booms, the strut being a portion of the tail boom extending forward from the pivot axis of the tail boom. Landing wheels are disposed on the strut in tandem spaced relationship. The resiliency of the strut causes the strut to act as a leaf spring and thus dampen shock landing loads. Operatively secured to the bottom surface of the fixed wing portions and the forward portion of the landing gear struts is a pair of dashpots for absorbing the shock landing loads.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: January 26, 1999
    Assignee: Freewing Aerial Robotics Corporation
    Inventor: Hugh Schmittle
  • Patent number: 5769359
    Abstract: An aircraft control system for controlling an aircraft, particularly a free wing aircraft in low speed or hover regimes. An air speed sensor measures air speed of the aircraft and outputs an air speed signal to a control processor which processes the air speed signal with a speed control input signal. A control actuator actuates an aircraft control surface in response to the control surface control signal. The air speed sensor may include a shaft mounted impeller located in an airstream of the aircraft. A rotational speed sensor, coupled to the impeller, measures a rotational speed of the impeller and outputs a rotational speed signal as the air speed signal. In an alternative embodiment, the air speed sensor may include a vane located in an airstream of the aircraft and deflected in response to air flow in the airstream.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: June 23, 1998
    Assignee: Freewing Aerial Robotics Corporation
    Inventors: Elbert L. Rutan, Christophe Chevallier
  • Patent number: 5765777
    Abstract: A VTOL/STOL free wing aircraft includes a free wing having wings on opposite sides of a fuselage connected to one another respectively for free rotation about a spanwise access. Improved control upon landing of the aircraft is achieved by utilizing a variable pitch propulsion system, enabling the pitch of the propeller to be varied corresponding to the speed of the aircraft and angle of approach upon descent.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: June 16, 1998
    Assignee: Freewing Aerial Robotics Corporation
    Inventor: Hugh Schmittle
  • Patent number: 5560568
    Abstract: Apparatus and method for recovering and arresting an aircraft on a floating platform is disclosed. The aircraft has a fuselage, a wing, and a source of propulsion for propelling the aircraft in flight. During landing approach, an inflatable cushion attached to the fuselage is deployed below the fuselage via inflation. In the inflated condition, a fastening material disposed on a downward facing surface of the cushion is thereby adapted to adhesively contact the floating platform deck so that the forward motion of the aircraft is slowed and arrested. In the preferred embodiment, the fastening material is one of male or female VELCRO.RTM. which is adapted to mate with corresponding VELCRO.RTM. material covering the platform deck.
    Type: Grant
    Filed: June 15, 1994
    Date of Patent: October 1, 1996
    Assignee: Freewing Aerial Robotics Corporation
    Inventor: Hugh Schmittle
  • Patent number: 5509623
    Abstract: A free wing aircraft including a free wing pivotally supported about a spanwise axis for flight in a free wing mode of operation with respect to the fuselage is disclosed. The free wing is capable of being deflected into a nose down configuration sufficient to create an aerodynamic braking effect to decrease air speed after landing upon roll-out. This aerodynamic braking effect can also be sufficient to create negative lift that plants the aircraft firmly down, increasing the coefficient of friction and allowing the aircraft brakes to be more effective relative to a fixed wing aircraft at touchdown.
    Type: Grant
    Filed: June 15, 1994
    Date of Patent: April 23, 1996
    Assignee: Freewing Aerial Robotics Corporation
    Inventor: Hugh Schmittle
  • Patent number: 5395073
    Abstract: A VTOL/STOL free wing aircraft includes a free wing having wings on opposite sides of a fuselage connected to one another respectively adjacent fixed wing inboard or center root sections fixedly attached to the fuselage for free rotation about a spanwise access. Horizontal and vertical tail surfaces are located at the rear end of a boom assembly rotatably connected to the fuselage. A gearing or screw rod arrangement controlled by the pilot or remote control operator selectively relatively pivots the fuselage in relation to the tail boom assembly to enable the fuselage to assume a tilted or nose up configuration to enable VTOL/STOL flight.
    Type: Grant
    Filed: January 22, 1993
    Date of Patent: March 7, 1995
    Assignee: Freewing Aerial Robotics Corporation
    Inventors: Elbert L. Rutan, Hugh J. Schmittle
  • Patent number: 5340057
    Abstract: The VTOL aircraft includes a free wing having wings on opposite sides of the fuselage connected to one another for joint free rotation and for differential pitch settings under pilot, computer or remote control. On vertical launch, pitch, yaw and roll control is effected by the elevators, rudder and the differential pitch settings of the wings, respectively. At launch, the elevator pitches the fuselage nose downwardly to alter the thrust vector and provide horizontal speed to the aircraft whereby the free wing freely rotates relative to the fuselage into a generally horizontal orientation to provide lift during horizontal flight. Transition from horizontal to vertical flight is achieved by the reverse process and tile aircraft may be gently recovered in or on a resilient surface such as a net.
    Type: Grant
    Filed: March 13, 1992
    Date of Patent: August 23, 1994
    Assignee: Freewing Aerial Robotics Corporation
    Inventor: Hugh Schmittle
  • Patent number: RE36487
    Abstract: The craft is for hovering flight, vertical takeoff and landing, and horizontal forward flight. It has a tail-sitting fuselage and a ducted fan mounted to the fuselage aft to provide propulsion in both (a) hovering and vertical flight and (b) horizontal forward flight. At each side is a floating wing, supported from the fuselage for passive rotation (or an actuator-controlled optimized emulation of such rotation) about a spanwise axis, to give lift in forward flight. The fuselage attitude varies between vertical in hovering and vertical flight, and generally horizontal in forward flight. Preferably the fuselage is not articulated; there is just one fan, the sole source of propulsion, rotating about only an axis parallel to the fuselage; and thrust-vectoring control vanes operate aft of the fan.
    Type: Grant
    Filed: November 13, 1995
    Date of Patent: January 11, 2000
    Assignee: Freewing Aerial Robotics Corporation
    Inventor: Barnaby Wainfan