Abstract: An expansion joint spring clip can eliminate flutter, pulsations and reverse bending on non-metallic fabric flue duct expansion joints. The expansion joint spring clip can hold the expansion joint in a fixed arch such that it can still perform its function with regard to accommodating the ducting system movements. The expansion joint spring clip allows the entire width of the non-metallic expansion joint to retain its position during start-ups, downloading and during full or partial boiler, kiln, furnace loads and the like. The expansion joint spring clip can be installed in the existing geometry of an expansion joint by producing an arch while not damaging the expansion joint after being installed. The expansion joint can still accommodate axial and limited lateral movements, allowing the expansion joint to perform its function.
Abstract: The invention relates to a stable high-performance flat sealing material for application at a temperature up to 330° C. which is compacted by heat and pressure in such a way that a composite film, i.e. a reinforced (fibrous) film is obtainable by compressing one or several non-woven fabrics or one or several non-woven mat weaves at a predetermined pressure and temperature. The inventive flat sealing material is suitable for highly stressed joints, in particular for cylinder head gaskets. The thus produced composite film or the (fiber and/or binder) reinforced film has the layer thicknesses ranging from 0.01 to 3.0 mm obtainable in one operation from one or several non-woven fabric layers, thereby making it possible for the first time to obtain the layer thicknesses of 0.01 mm using the inventive materials.
Abstract: The invention relates to a nonwoven mat as half-stuff which contains a high performance thermoplast as melt fiber and a reinforcing fiber, and also a method for producing a nonwoven mat of this type and fiber composites produced from the nonwoven mat.
Abstract: The present invention relates to sealing materials free from asbestos or other inorganic fibrous substances in the form of papers, paperboards, cardboards or plates. The gasket compositions preferably comprise a mixture of non-fibrillated organic fibers having an elongation at break of < 5% (up to 200.degree. C.) and fibrillated P polyaramide fibers as well as, powdered graphite and an elastomeric resin binder. A new and improved process for making non-woven, planar sealing materials free from asbestos or other inorganic fibrous substances, is also provided. The reinforcement-forming and sheet-forming organic fibers, binders and fillers are homogenized in a mixer and the mixture is subsequently treated with heat and pressure to form the non-woven webs.
Abstract: Process for dyeing or printing glass fibers, in particular textile glass fibers in various forms, by dyeing or printing the fiber materials with anionic dyes in the presence of cationic compounds following an acid pretreatment. The cationic compounds may be applied to the fiber material before the actual dyeing or printing process or else be applied together with the dye from the same dyeing liquor or printing paste. Suitable cationic compounds are in particular polyquaternized ammonium compounds. Level dyeings are obtained on the glass fiber materials with good light fastness properties.
Abstract: The invention relates to an asbestos-free material for use as sealing, damping and/or separating element comprising an elastomer matrix which apart from the usual process fibers and elastic binders include lamellar inorganic material in an amount of 10 to 60% by weight with respect to the total mass.