Abstract: A transmitting circuit transmits data to which an error detection code is attached to a receiving circuit via a transmission path. When detecting the error of the data received via the transmission path, a receiving circuit transmits a retransmit request for the data in which the error is detected to the transmitting circuit. The receiving circuit enters a termination unit adjustment period using the error detection of the received data as a trigger and updates the resistance values of a receiving side termination unit installed at the termination of the transmission path to an appropriate value within the termination unit adjustment period.
Abstract: A system including a first apparatus including a first processor, a first storage device, and a first communication interface and a second apparatus including a second processor and a second communication interface is provided. The first processor measures traffic of data communicated via a predetermined communication path in each of a plurality of time ranges, stores the data communicated in each of the plurality of time ranges in the first storage device, and performs a control processing to cause the first communication interface to transmit the measured data traffic to the second apparatus, and when the second processor receives the measured data, the second processor performs control processing to cause the second communication interface to transmit to the first apparatus designation information designating one of the plurality of time ranges in which protection target data not to be deleted from the first storage device has been communicated.
Abstract: A design method includes calculating a calculated compensation amount of a dispersion compensation module arranged on each of a plurality of wavelength paths in such a way that a residual chromatic dispersion value of each of the wavelength paths which transmits an optical signal between an initial node and a final node satisfies a tolerance condition given in accordance with a priority given to each of the wavelength paths; and deciding a decision value to be applied as the compensation amount of the dispersion compensation module based on the calculated compensation amount based on a plurality of candidate values each being prepared in advance as the candidate for the compensation amount of the dispersion compensation module.
Abstract: A skew adjusting apparatus includes: latching circuits that latch other signals in synchronism with transition timing of the signal level of a reference signal among signals transmitted with a plurality of communication cables; delay elements that are provided on the plurality of communication cables, and delay the signals transmitted with the plurality of communication cables, respectively; and a controller that controls the delay elements based on the outputs of the latching circuits to adjust skews between the signals.
Abstract: A circuit may include a phase difference selector, a clock signal generator, a reference clock phase detector, and a data signal phase detector. The phase difference selector may be configured to select one of multiple reference clock phase difference signals generated by the reference clock phase detector based on a difference in phase between multiple clock signals and a reference clock. The clock signal generator may be configured to generate the multiple clock signals based on the selected reference clock phase difference signal. The data signal phase detector may be configured to generate a data phase difference signal based on differences in phase between the clock signals and a data signal. The data phase difference signal may be used by the phase difference selector to select one of the reference clock phase difference signals.
Abstract: A data transfer system includes a transmission circuit, which operates by a first clock signal, and a receiving circuit, which operates by a second clock signal different from the first clock signal. The transmission circuit includes an output circuit that outputs a poll signal, of which a level is logically inverted in accordance with a transmission timing of transmission data from the transmission circuit to the receiving circuit. A first signal generating circuit receives the transmission data at a plurality of timings and generates plural sets of reception data corresponding to the plurality of timings. A second signal generating circuit receives the poll signal at the plurality of timings and generates synchronous poll signals corresponding to the plurality of timings. A data selecting circuit compares levels of the synchronous poll signals with each other and selects one of the sets of reception data based on the comparison result.
Abstract: In order to improve reliability by preventing an edge breakdown in a semiconductor photodetector having a mesa structure such as a mesa APD, the semiconductor photodetector includes a mesa structure formed on a first semiconductor layer of the first conduction type formed on a semiconductor substrate, the mesa structure including a light absorbing layer for absorbing light, an electric field buffer layer for dropping an electric field intensity, an avalanche multiplication layer for causing avalanche multiplication to occur, and a second semiconductor layer of the second conduction type, wherein the thickness of the avalanche multiplication layer at the portion in the vicinity of the side face of the mesa structure is made thinner than the thickness at the central portion of the mesa structure.
Type:
Grant
Filed:
November 22, 2010
Date of Patent:
July 8, 2014
Assignees:
Fujitsu Limited, Sumitomo Electric Device Innovations, Inc.
Abstract: The semiconductor device comprises a device isolation region formed in a semiconductor substrate, a lower electrode formed in a device region defined by the device isolation region and formed of an impurity diffused layer, a dielectric film of a thermal oxide film formed on the lower electrode, an upper electrode formed on the dielectric film, an insulation layer formed on the semiconductor substrate, covering the upper electrode, a first conductor plug buried in a first contact hole formed down to the lower electrode, and a second conductor plug buried in a second contact hole formed down to the upper electrode, the upper electrode being not formed in the device isolation region. The upper electrode is not formed in the device isolation region, whereby the short-circuit between the upper electrode and the lower electrode in the cavity can be prevented.
Abstract: An antenna unit includes a housing, a substrate, and an antenna. The housing includes a bottom wall, first and second side walls extending upward from the corresponding side edges of the bottom wall, a rear wall extending upward from the rear edge of the bottom wall, and an upper wall extending from the upper edge of the first side wall toward the second side wall leaving a gap between an edge of the upper wall and the second side wall. The substrate is fixed to the upper wall, and a part of the substrate projects from the edge of the upper wall to a position that is closer to the second side wall than is the edge of the upper wall. The antenna is fixed to the part of the substrate projecting from the edge of the upper wall such that a radio-wave emitting aperture of the antenna faces forward.
Abstract: A device has a unit acquires photograph images taken by a first and a second camera; a unit sets correspondences between positions in a first photograph image, in a first display image, in a second photograph image, and in a second display image on the basis of a first photographic line-of-sight from the first camera, a line-of-sight in the first display image based on the first photograph image, a second photographic line-of-sight from the second camera, and a line-of-sight in the second display image based on the second photograph image; and a unit generates the first display image based on correspondence with the first photograph image, generates a third display image by interpolating between the first display image and the second display image based on correspondence with the first photograph image or the second photograph image, and generates the second display image based on correspondence with the second photograph image.
Abstract: An optical amplifier amplifies signal light and includes a pump light source that outputs pump light of a wavelength different from that of the signal light; a combining unit that combines the signal light and the pump light output by the pump light source, to output combined light; an amplifying unit that has non-linear optical media that transmit the combined light to amplify the signal light, the amplifying unit further removing, in the non-linear optical media, idler light generated from the signal light and the pump light, and outputting light that results; and an extraction filter that extracts the signal light from the light output by the amplifying unit.
Abstract: A wireless communication system 1 performs MIMO communication between a wireless base station 10 with a plurality of antennas 14 and a mobile terminal 20 with a plurality of antennas 24. A wireless base station 10 includes a selector 25 that selects, from the pairs of the antennas, one pair for which the gain is largest; the selector 25 that updates an inverse matrix of a channel matrix with respect to a group of pairs of unselected antennas to acquire inverse matrices and that selects a pair from the group on the basis of the acquire inverse matrices; and a RF switch 13 that performs communication by using the selected antennas. The selector 25 continues to update the inverse matrix and continues to select a pair from the group until a predetermined number of antennas have been selected.
Abstract: A conductive film having a first width in a first direction, an ONO film, and a control gate are formed above a tunnel gate insulating film. With the control gate as a mask, the conductive film is etched to form a floating gate. Then, an inter-layer insulating film is formed. A contact hole whose width in the first direction is larger than the first width is formed in the inter-layer insulating film. Then, sidewall spacer is formed on an inside wall of the contact hole.
Abstract: In a data processing apparatus, when an instruction for starting validation is provided, or when definition information is updated, data input from a data source is collected, and a process for narrowing down of the collected data is executed. In the data narrowing process, by extracting records and items as process targets according to the definition information that defines the operation of the apparatus, the number of data items used for validation is reduced. Then, the operation is validated using the narrowed data. In the operation validation process, a virtual transfer destination of output of data is provided within the apparatus, and the data is output to the virtual transfer destination, for comparison with the output data, whereby the validation of the operation is performed.
Abstract: A semiconductor device manufacture method has the steps of: (a) coating a low dielectric constant low-level insulating film above a semiconductor substrate formed with a plurality of semiconductor elements; (b) processing the low-level insulating film to increase a mechanical strength of the low-level insulating film; (c) coating a low dielectric constant high-level insulating film above the low-level insulating film; and (d) forming a buried wiring including a wiring pattern in the high-level insulating film and a via conductor in the low-level insulating film. The low-level insulating film and high-level insulating film are made from the same material. The process of increasing the mechanical strength includes an ultraviolet ray irradiation process or a hydrogen plasma applying process.
Abstract: Provided is a device for issuing a synchronization message in a large-scaled computing system including an interconnect and a plurality of computing devices that is connected to the interconnect. The interconnect includes a plurality of switches that is connected to each other. The device sends a synchronization message for synchronizing computing processes on the computing devices to all the computing devices at same timing via the switches that are directly connected to any of the computing devices by using a protocol for a general-purpose interconnect.
Abstract: A an optical module includes a circuit board provided with an optical element selected from a light-receiving element and/or a light-emitting element; a lens where light from the optical element passes through; an alignment mark serving as an indicator for alignment with the optical element; and an optical waveguide formed to input/output light into/from the optical element through the lens.
Abstract: The present invention provides nonlinear compensating apparatus and transmitter. The nonlinear compensating apparatus comprises: an information acquiring unit to acquire a symbol information sequence of the pulse information input by a transmitting side; a perturbation quantity calculating unit to calculate the weighted sum of the interaction of the pulses of several items at several different instants relative to the current instant, to obtain the perturbation quantity produced by the current instant nonlinear effect on a transmission link of a certain length; and an information compensating unit to compensate for the symbol information sequence of the pulses at the current instant acquired by the information acquiring unit by using the perturbation quantity obtained by the perturbation quantity calculating unit, so as to obtain the symbol information sequence compensated at the current instant to cause the transmitting side to transmit signals according to the compensated symbol information sequence.
Abstract: According to one embodiment, a method may include assigning a virtual local area network (VLAN) ingress connection identifier (iXid) to a frame upon ingress. The method may also include classifying a traffic flow for which the frame is a part through ingress engines of the network element based on the iXid. The method may further include swapping the iXid for an egress connection identifier (eXid) in the frame. The method may additionally include policing or shaping the traffic flow based on at least one of the iXid and the eXid. Moreover, the method may include classifying the traffic flow through egress engines of the network element based on the eXid.
Type:
Grant
Filed:
September 10, 2010
Date of Patent:
July 8, 2014
Assignee:
Fujitsu Limited
Inventors:
Muhammad Sakhi Sarwar, Ali Zaringhalam, Stephen Joseph Brolin, William Hom, Yasir Malik