Patents Assigned to Fushun Research Institute of Petroleum and Petrochemicals
  • Patent number: 9708229
    Abstract: Disclosed is a catalyst for preparing isobutene by dissociation of methyl tert-butyl ether, the catalyst comprising amorphous silica alumina and a silicalite-1 molecular sieve, wherein the total IR acid amount of weak acids in the catalyst is in a range from 0.020 to 0.080 mmol/g, and the ratio of B acid/L acid of the weak acids is in a range from 2.5:1 to 4.0:1. Also provided is a method of preparing the catalyst and the use thereof. The catalyst has a high selectivity with respect to isobutene, and high conversion of methyl tert-butyl ether, and can also effectively inhibit formation of the by-product dimethyl ether.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: July 18, 2017
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC
    Inventors: Shumei Zhang, Kai Qiao, Ming Chen, Qingtong Zhai, Changxin Guo, Chunmei Wang
  • Patent number: 9574141
    Abstract: The present invention relates to a wet start-up method for hydrogenation unit, an energy-saving hydrogenation process, and a hydrogenation apparatus. The method involves heating a start-up activating oil to a specific temperature and flowing the heated oil through a bed of hydrogenation catalyst bed, so that the temperature at the catalyst bed layer is increased to 180±10° C. or above by means of heat exchange and the reaction heat generated from activation in the start-up method.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: February 21, 2017
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC
    Inventors: Ronghui Zeng, Tao Liu, Xiangchen Fang, Zhaoming Han, Xuehui Zhang, Shike Sun, Chong Peng, Rong Guo, Jihua Liu, Benzhe Li
  • Patent number: 9446996
    Abstract: The present disclosure provides a reactor for at least two liquid materials, comprising an enclosed reactor housing; a feeding tube having liquid material inlets for receiving corresponding liquid materials respectively; a distribution tube communicating with the feeding tube and extending into the reactor housing, the distribution tube being provided with a plurality of distribution holes in the region thereof extending into the reactor housing; a rotating bed in form of a hollow cylinder, which is disposed in the reactor housing via a fixing mechanism, thus dividing inner cavity of the reactor housing into a central area and an outer area, the rotating bed being capable of rotating driven by a driving mechanism; and a material outlet provided in a lower portion of the reactor housing for outputting product after reaction.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: September 20, 2016
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC
    Inventors: Xiangchen Fang, Deqiang Peng, Huimin Qi, Xin Li, Yan Wang, Jianbing Chen, Luyao Wang, Zhiyu Liu, Xin Chen, Shengzhong Zhang
  • Patent number: 9327277
    Abstract: The present invention provides a fibrous IM-5 molecular sieve and the preparation process thereof. According to the process according to the present invention, by adding an appropriate amount of a quaternary ammonium salt with a long carbon chain to the preparation system so as to occur a synergistic action with the organic templet agent, an IM-5 molecular sieve which would be otherwise a rodlike form is converted into the fibrous form. The IM-5 molecular sieve according to the present invention has an aspect ratio greater than that of the rodlike IM-5 molecular sieve obtained according to the prior art, such that the proportion of the exposed periphery crystal face is higher, which benefit to increasing the selectivity of the catalytic reaction for the corresponding crystal face.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: May 3, 2016
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC
    Inventors: Weiya Yang, Fengxiang Ling, Shaojun Wang, Zhiqi Shen
  • Patent number: 9314781
    Abstract: The present invention discloses a catalyst for paraffin isomerization, as well as a preparation method and use thereof. The catalyst comprises a TON molecular sieve modified by rare earth, an inorganic refractory oxide modified by zirconium oxide and a noble metal of group VIII. The weight ratio of the TON molecular sieve modified by rare earth to the inorganic refractory oxides modified by zirconium oxide is 10:90 to 90:10, and the content of the metal of group VIII is 0.1 to 10 wt % based on the metal. When used in the process of isomerization dewaxing of various raw materials containing paraffins, the catalyst can not only decrease the solidifying points of raw oil containing paraffins, but also increase the yield of liquid products. Particularly, when used in the process of isomerization dewaxing of lubricating oil distillates, the catalyst is advantageous in producing base oil for lubricating oil with a high a higher yield, a lower pour point (solidifying point) and a higher viscosity index.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: April 19, 2016
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC
    Inventors: Huiqing Xu, Quanjie Liu, Liming Jia, Xiwen Zhang, Wei Wang
  • Patent number: 9314776
    Abstract: This invention relates to a composite oxide, production and use thereof as a methane selective oxidizing catalyst. The composite oxide has a composition as illustrated by the formula RhRxMoyVzO?-?, wherein the symbols are as defined in the specification. When used as a methane selective oxidizing catalyst, the present composite oxide provides a high methane conversion and a high selectivity to the aimed products.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: April 19, 2016
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC
    Inventors: Shudong Zhang, Yingjie Jin, Xiangqian Ni, Jie Li, Xiwen Zhang, Xinwei Zhang
  • Patent number: 9248437
    Abstract: The present invention provides a hollow IM-5 molecular sieve sphere and the preparation process thereof. The process according to the present invention adds a relatively great amount of the surfactant of a cationic quaternary ammonium salt in the IM-5 molecular sieve system, to form a hollow IM-5 molecular sieve sphere via the micelle action by the surfactant, which structure benefits the mass transfer of the reaction process.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: February 2, 2016
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC
    Inventors: Fengxiang Ling, Weiya Yang, Shaojun Wang, Zhiqi Shen
  • Patent number: 9162207
    Abstract: The invention relates to a fluidized bed reactor and a hydrogenation method thereof. The fluidized bed reactor (7) comprises a reactor shell (103) vertical to the ground and a phase separator (111) at the upper part of the shell (103). An inner circulation zone is provided under the phase separator (111), and comprises a cylinder (114), a tapered diffusion section (115) and a guiding structure (104). In the hydrogenation method using the fluidized bed reactor (7), an expanded bed reactor (3) is used to further hydrogenate part of the product from the fluidized bed reactor (7), and supply catalyst without influencing on the stable operation of the fluidized bed reactor (7).
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 20, 2015
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum & Petrochemicals Sinopec
    Inventors: Li Jia, Yongzhong Jia, Hailong Ge
  • Patent number: 9017545
    Abstract: Disclosed is a process for hydrotreating inferior naphtha fraction, comprising: (1) warming a recycle oil in a heating device; (2) mixing the inferior naphtha fraction with the recycle oil before and/or after the heating device; and (3) feeding the mixture of the inferior naphtha fraction and the recycle oil into a separating unit, wherein the gas-liquid separation is realized at least to obtain a gas phase and a liquid phase, wherein the gas phase comprises gasified inferior naphtha, wherein the gas phase enters a hydrotreating reactor to undergo hydrotreating, and wherein part of the liquid phase circulates to the heating device as the recycle oil; wherein warming of the recycle oil is controlled to ensure the temperature of gas phase from the separator at least reaches the inlet temperature of the hydrotreating reactor. Comparing with the prior art, the inventive process effectively solves the coking problem of the hydrogenating unit for inferior naphtha fraction.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: April 28, 2015
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals, Sinopec
    Inventors: Ying Zhang, Baozhong Li, Ronghui Zeng, Youliang Shi
  • Publication number: 20140275683
    Abstract: Disclosed is a catalyst for preparing isobutene by dissociation of methyl tert-butyl ether, the catalyst comprising amorphous silica alumina and a silicalite-1 molecular sieve, wherein the total IR acid amount of weak acids in the catalyst is in a range from 0.020 to 0.080 mmol/g, and the ratio of B acid/L acid of the weak acids is in a range from 2.5:1 to 4.0:1. Also provided is a method of preparing the catalyst and the use thereof. The catalyst has a high selectivity with respect to isobutene, and high conversion of methyl tert-butyl ether, and can also effectively inhibit formation of the by-product dimethyl ether.
    Type: Application
    Filed: October 24, 2012
    Publication date: September 18, 2014
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC
    Inventors: Shumei Zhang, Kai Qiao, Ming Chen, Qingtong Zhai, Changxin Guo, Chunmei Wang
  • Publication number: 20140128654
    Abstract: The present disclosure provides a reactor for at least two liquid materials, comprising an enclosed reactor housing; a feeding tube having liquid material inlets for receiving corresponding liquid materials respectively; a distribution tube communicating with the feeding tube and extending into the reactor housing, the distribution tube being provided with a plurality of distribution holes in the region thereof extending into the reactor housing; a rotating bed in form of a hollow cylinder, which is disposed in the reactor housing via a fixing mechanism, thus dividing inner cavity of the reactor housing into a central area and an outer area, the rotating bed being capable of rotating driven by a driving mechanism; and a material outlet provided in a lower portion of the reactor housing for outputting product after reaction.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Applicants: Fushun Research Institute of Petroleum And Petrochemicals, Sinopec, China Petroleum & Chemical Corporation
    Inventors: Xiangchen FANG, Deqiang PENG, Huimin QI, Xin LI, Yan WANG, Jianbing CHEN, Luyao WANG, Zhiyu LIU, Xin CHEN, Shengzhong ZHANG
  • Publication number: 20140124408
    Abstract: The present invention relates to a wet start-up method for hydrogenation unit, an energy-saving hydrogenation process, and a hydrogenation apparatus. The method involves heating a start-up activating oil to a specific temperature and flowing the heated oil through a bed of hydrogenation catalyst bed, so that the temperature at the catalyst bed layer is increased to 180±10° C. or above by means of heat exchange and the reaction heat generated from activation in the start-up method.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 8, 2014
    Applicants: Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Ronghui ZENG, Tao LIU, Xiangchen FANG, Zhaoming HAN, Xuehui ZHANG, Shike SUN, Chong PENG, Rong GUO, Jihua LIU, Benzhe LI
  • Patent number: 8609064
    Abstract: Disclosed are a novel NU-85 molecular sieve having a specific surface area ranging from about 405 m2/g to about 470 m2/g and a pore volume ranging from about 0.27 cm3/g to about 0.35 cm3/g, and processes for preparing the NU-85 molecular sieve.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: December 17, 2013
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum and Petrochemical, Sinopec
    Inventors: Zhizhi Zhang, Xiwen Zhang, Bo Qin
  • Publication number: 20130248415
    Abstract: The present invention discloses a catalyst for paraffin isomerization, as well as a preparation method and use thereof. The catalyst comprises a TON molecular sieve modified by rare earth, an inorganic refractory oxide modified by zirconium oxide and a noble metal of group VIII. The weight ratio of the TON molecular sieve modified by rare earth to the inorganic refractory oxides modified by zirconium oxide is 10:90 to 90:10, and the content of the metal of group VIII is 0.1 to 10 wt % based on the metal. When used in the process of isomerization dewaxing of various raw materials containing paraffins, the catalyst can not only decrease the solidifying points of raw oil containing paraffins, but also increase the yield of liquid products. Particularly, when used in the process of isomerization dewaxing of lubricating oil distillates, the catalyst is advantageous in producing base oil for lubricating oil with a high a higher yield, a lower pour point (solidifying point) and a higher viscosity index.
    Type: Application
    Filed: October 13, 2011
    Publication date: September 26, 2013
    Applicants: FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Huiqing Xu, Quanjie Liu, Liming Jia, Xiwen Zhang, Wei Wang
  • Publication number: 20130118953
    Abstract: Disclosed is a process for hydrotreating inferior naphtha fraction, comprising: (1) warming a recycle oil in a heating device; (2) mixing the inferior naphtha fraction with the recycle oil before and/or after the heating device; and (3) feeding the mixture of the inferior naphtha fraction and the recycle oil into a separating unit, wherein the gas-liquid separation is realized at least to obtain a gas phase and a liquid phase, wherein the gas phase comprises gasified inferior naphtha, wherein the gas phase enters a hydrotreating reactor to undergo hydrotreating, and wherein part of the liquid phase circulates to the heating device as the recycle oil; wherein warming of the recycle oil is controlled to ensure the temperature of gas phase from the separator at least reaches the inlet temperature of the hydrotreating reactor. Comparing with the prior art, the inventive process effectively solves the coking problem of the hydrogenating unit for inferior naphtha fraction.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 16, 2013
    Applicants: FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: CHINA PETROLEUM & CHEMICAL CORPORATI, FUSHUN RESEARCH INSTITUTE OF PETROLEU
  • Publication number: 20130123549
    Abstract: The present disclosure provides a hydrogenation catalyst, the preparation process thereof and the application thereof in the production of 1,4-butanediol by hydrogenating dialkyl maleate and/or dialkyl succinate. The catalyst comprises Cu—Al-A-B-G, wherein A comprises at least one of Zn. Mo and W, B comprises at least one of Ba, Mn, Mg, Ti, Ce and Zr. In the process for preparing said hydrogenation catalyst, a part of Cu and A are precipitated first and the rest of Cu, Al and B are precipitated successively.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 16, 2013
    Applicants: FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICAL, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: CHINA PETROLEUM & CHEMICAL CORPORATI, FUSHUN RESEARCH INSTITUTE OF PETROLEU
  • Patent number: 8329610
    Abstract: The present invention relates to a hydrogenation catalyst composition, process for preparing the same and use thereof. The composition comprises a hydrogenation catalyst, an organonitrogen compound in an amount of 0.01%-20% by weight of the catalyst, a sulfiding agent in an amount of 30%-150% by weight of the sulfur-requiring amount calculated theoretically of the hydrogenation catalyst, and an organic solvent in an amount of 0.1%-50% by weight of the catalyst. The preparation process comprises introducing the required substances onto the hydrogenation catalyst in oxidation state. By introduction of the organonitrogen compound, sulfur and organic solvent, the hydrogenation catalyst composition of the present invention may further increase the sulfur-maintaining ratio of the catalyst during the activation, slow down the concentrative exothermic phenomenon, decrease the rate of temperature rise of the catalyst bed layer, and improve the activity of the catalyst.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: December 11, 2012
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals, Sinopec Corp.
    Inventors: Yulan Gao, Xiangchen Fang, Gang Wang, Fenglan Cao, Chonghui Li, Guang Chen
  • Patent number: 7435336
    Abstract: The present invention relates to a process for carrying our gas-liquid countercurrent processing comprising passing the liquid material and the gas reactant in countercurrent flow through the fixed bed of catalyst in a reactor, characterized in that the fixed bed of catalyst includes two or more catalyst layers, with the difference of voidage between the adjacent catalyst layers being at least 0.05. The voidages of the catalyst layers can be increased or decreased in the direction of the flow of the liquid phase. The process of the invention can be effected with an increased range of gas-liquid ratio and an improved stability and flexibility.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: October 14, 2008
    Assignees: China Petroleum & Chenical Corporation, Fushun Research Institute of Petroleum and Petrochemicals Sinopec, Corp.
    Inventors: Baoping Han, Xiangchen Fang, Ronghui Zeng, Ping Wu, Mei Jin, Hongjiang Sun
  • Patent number: 7238276
    Abstract: The present invention relates to a medium-pressure hydrocracking process which uses a fresh hydrogen resource and a hydrosaturation catalyst with reduced metals of group VIB and/or group VIII as the active ingredients to selectively and deeply hydrosaturate jet fuel and/or diesel cuts derived in the medium-pressure hydrocracking process.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: July 3, 2007
    Assignees: China Petroleum Corporation, Fushun Research Institute of Petroleum and Petrochemicals
    Inventors: Xiangchen Fang, Ling Lan, Xiaobing Song, Minghua Guan, Guang'an Jiang, Fenglai Wang, Zhengnan Yu, Qun Guo
  • Patent number: 6797248
    Abstract: The present invention relates to a mesoporous molecular sieve MPL-1 and its preparation process. The anhydrous composition of this molecular sieve contains at least three elements, i.e. aluminum, phosphorus and oxygen. The molecular sieve has larger pore diameters, generally 1.3 nm-10.0 nm, a larger specific surface area and adsorption capacity. It is synthesized under the hydrothermal process with an organic compound as template. Where necessary, silicon and/or titanium may be added to synthesize the aluminosilicophosphate, aluminotitanophosphate, or aluminosilicotitanophosphate molecular sieves having a mesoporous structure, and/or metal compounds may be added to synthesize derivatives of mesoporous aluminophosphate molecular sieves containing the corresponding hetero-atoms.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: September 28, 2004
    Assignees: China Petroleum and Chemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC Corp.
    Inventors: Quanjie Liu, Jun Yang, Yan Peng