Abstract: The invention provides a method for detecting, regenerating and/or preventing defects in solar panels of a solar panel installation. In this method, a regeneration voltage is applied between the supporting structure in which the solar panels are mounted, and the negative pole of the solar panels, the positive pole of the solar panels, or both poles of the solar panels, being short-circuited. Additionally, the invention also provides an apparatus for performing said method, and a solar panel installation comprising said apparatus.
Abstract: The present invention provides a solar panel installation, comprising at least one solar panel comprising photovoltaic cells, and a translucent plate on the upper side, wherein the translucent plate is provided with an electrically conductive layer that is provided in order to have an electric potential applied to it and which is electrically isolated from the photovoltaic cells, such that an electric potential applied to the electrically conductive layer will be uniformly distributed over the upper side of the at least one solar panel. In addition, the invention provides a method for applying the electrically conductive layer and for regenerating and/or preventing defects in the at least one solar panel.
Abstract: The invention provides a method for detecting, regenerating and/or preventing defects in solar panels of a solar panel installation. In this method, a regeneration voltage is applied between the supporting structure in which the solar panels are mounted, and the negative pole of the solar panels, the positive pole of the solar panels, or both poles of the solar panels, being short-circuited. Additionally, the invention also provides an apparatus for performing said method, and a solar panel installation comprising said apparatus.
Abstract: Insulating glazing element comprising a glass pane arrangement with a first outward pointing glass pane, a second inward pointing glass pane and at least a third glass pane arranged on the inside between the glass panes, wherein the glass panes comprise surfaces arranged on the inside, a spacer assembly provided for setting a distance between the glass panes and an edge seal assembly provided for sealing gaps between the glass panes against the surroundings, wherein the glazing element is set up in such a way that the pressure in the gaps is lower compared to the exterior atmospheric pressure, wherein at least one of the surfaces arranged on the inside comprises at least one low emissivity coating layer, the condition 0.3?(A1/A2)?4 is met for the solar absorptions A1, A2 of the first and second glass pane, and the solar absorption of the third glass pane is A3?0.17.
Abstract: An electronic book comprising a plurality of leaves, each leaf comprising pages of printed material bound at one edge to form a spine, with electrical circuits formed in each leaf. A common electronic circuit such as a speech generator and/or controller cooperates with the electrical circuits on each of the various pages, connected to the electrical circuits in the leaves through conductive paths through the spine of the book. The electrical circuits in the leaves include electrical elements such as switches, and sensory output devices (e.g., thermochromic devices, light emitting diodes, thermo-olfactory devices, electrochromic devices, and the like). The electrical elements are associated with particular portions of the printed material so that the particular portions can be selectively highlighted or emphasized (e.g., designated by actuation of a visual or olfactory device and/or text read).
Abstract: A model vehicle course is laid out along a non-conductive, printable substrate such as a heavy paper or plastic, which is typically, but not necessarily, non-rigid. First and second conductive deposits are made along at least one of the surfaces of the substrate extending, mutually spaced-apart, along the path for each vehicle accommodated by the given layout to supply electrical energization to the vehicle as it traverses the course. In one presently preferred embodiment of the invention, the conductive deposits constitute conductive ink layers emplaced by a conventional printing step.