Patents Assigned to Gainspeed, Inc.
  • Patent number: 9584869
    Abstract: Distributed and software reconfigurable remote CMTS (CMRTS) device, based on MAC and PHY units with FPGA and DSP components, for a HFC CATV network. The various CATV RF modulators, such as QAM modulators, may be located entirely at the fiber nodes if desired. Although a basic set of CATV QAM data waveforms may optionally be transmitted to the nodes using a first fiber, in a preferred embodiment, all data may be transmitted to the nodes using other protocols such as Ethernet protocols. The nodes will extract the data specific to each neighborhood and inject this data into the cable portion of the system as RF waveforms, such as RF QAM channels. A computerized “virtual shelf” control system for managing and reconfiguring the FPGA and DSP based CMTRS units, as well as a new type of edge router based all-digital virtual head end (virtual converged cable access platform) is also disclosed.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: February 28, 2017
    Assignee: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Patent number: 9521464
    Abstract: System and method to extend the data carrying capacity of a hybrid fiber cable (HFC) network by adding wideband RF signal capability above 1 GHz, and replacing the CATV amplifier devices with an improved type of Coax Domain Amplifier-Repeater (CDAR) device that, in addition to being a smart reconfigurable amplifier and cable signal diagnostic device, also segments the CATV cable portion of the HFC network into a series of smaller domains. The CDAR often alter RF signals from 5-865 MHz, while more freely passing RF signals over 1 GHz. Upstream capability is enhanced because the CDAR intercept 5-42 MHz upstream signals from each domain and convert to 1 GHz+ signals. Downstream capability is also enhanced because the CDAR can take efficiently encoded 1 GHz+ digital data, modulate it, and locally inject into each domain without crosstalk between domains. CDAR can use active cancellation, and active restoration techniques to improve performance.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: December 13, 2016
    Assignee: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Patent number: 9344769
    Abstract: Producing advanced HFC CATV cable systems while easing the burden of backward compatibility. The system improves CATV data carrying capacity by moving RF QAM modulators from the cable head end to various individually or group addressed optical fiber nodes supplying neighborhood CATV cables, and sending data from the cable head IP backbone to the nodes over optical fiber as IP data packets. For high backward compatibility, the system digitizes legacy RF waveforms, or demodulates legacy QAM waveforms to QAM symbols, also transmits these over the optical fiber as IP data packets, and then reconstitutes back to original waveforms as needed. The system is thus able to easily handle legacy NTSC, FM, QPSK waveforms and do partial (QAM symbol level) compression of legacy QAM waveforms to and from multiple nodes without requiring additional optical fiber wavelengths. The system may use non-standard upstream/downstream CATV frequency splits, filter bank receivers, and FPGA/DSP/ASIC methods.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: May 17, 2016
    Assignee: GAINSPEED, INC.
    Inventor: Shlomo Selim Rakib
  • Patent number: 9326039
    Abstract: System and method to extend the upstream data capacity of an HFC CATV system by extending a “shadow” optical fiber network deeper into the various CATV cable neighborhoods, with coax fiber terminals (CFT) spaced roughly according to the distribution of CATV active devices such as RF amplifiers. The CFT can intercept local upstream data from various neighborhood sub-regions and transform this upstream data into upstream optical data, thus relieving upstream data congestion in the 5-42 MHz CATV frequency region. The system can produce an order of magnitude improvement in upstream capability, while maintaining high compatibility with legacy HFC equipment. The CFT may exist in multiple embodiments ranging from low-cost “dumb” CFT to sophisticated CFT that can additionally provide GigE to the home (GTTH) service. Methods to maintain good compatibility with legacy CMTS devices, and methods to utilize DOCSIS MAP data for more efficient data transmission are also discussed.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: April 26, 2016
    Assignee: GAINSPEED, INC.
    Inventor: Shlomo Selim Rakib
  • Patent number: 9325515
    Abstract: Distributed CMTS device for a HFC CATV network serving multiple neighborhoods by multiple individual cables, in which at least some and often all of the QAM modulators that provide data for the individual cables are remote QAM modulators ideally located at the fiber nodes. A CCAP set of IP/on-demand data is transmitted to the nodes using an optical fiber, often using digital protocols such as Ethernet protocols. Optionally a basic set of legacy CATV QAM data, transmitted using RF waveforms transposed to optical frequencies, may also be transmitted to the nodes using either the same or different optical fiber. The nodes extract the data specific to each neighborhood, and inject this data into unused cable QAM channels along with any optional legacy CATV QAM waveforms as desired, thus achieving improved data transmission rates through finer granularity. A computerized “virtual shelf” control system for this system is also disclosed.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: April 26, 2016
    Assignee: GAINSPEED, INC.
    Inventor: Shlomo Selim Rakib
  • Patent number: 9191113
    Abstract: A method of converting legacy HFC CATV cable systems, which transmit data over the optical fiber portion of the system using the optical counterpart of analog RF waveforms, such as RF QAM waveforms transduced to corresponding optical QAM waveforms, to improved HFC CATV systems that transmit data over the optical fiber using optical fiber optimized protocols, such as Ethernet frames and other optical fiber optimized digital transport protocols. According to the method, most aspects of the legacy HFC CATV system may be retained, however at the CATV head end, the optical fiber transmitter system is replaced by an improved system that extracts the underlying symbols from legacy waveforms, packages these symbols into optical fiber optimized packets, and transmits downstream. The legacy optical fiber nodes are replaced with improved nodes capable of receiving the packets and remodulating the symbols into RF waveforms suitable for injection into the system's CATV cable.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: November 17, 2015
    Assignee: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Patent number: 9118389
    Abstract: Methods to improve the data carrying capacity of CATV DOCSIS systems and other communications systems are disclosed. Communications channels may be more efficiently spaced with reduced or absent guard bands by using receivers with adaptive signal cancellation methods, equalizing circuits, or polyphase filter banks and Fast Fourier Transform signal processing methods to correct for higher levels of cross-talk. QAM type communications channels may also be utilized on a synchronized two-transmitter at a time basis by adjusting the transmitters to predefined signal levels, such as +1, ?1, +½, ?½ to enable the combined signals to be distinguished at the receiver. These two methods may be combined to create a still higher data throughput system.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: August 25, 2015
    Assignee: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Patent number: 8938769
    Abstract: A virtual converged cable access platform (CCAP) system and method for hybrid fiber CATV (HFC) cable networks. The system uses a new type of digital optical fiber node configured to receive optical fiber data packets, and reconstitute the optical data packets into RF waveforms suitable for injection into the system's CATV cable. The system replaces the legacy HFC head end with a simplified “virtual head end”. The system's virtual head end operates using a new type of virtual CCAP controller and virtual CCAP software that in turn controls high performance edge routers. Much of the intelligence of running the HFC cable system is managed by the controller software, while the edge router manages the interface between the CATV portion of the system and outside networks. The system can handle even legacy CATV RF signals by appropriate conversion operations, while reducing power and space needs, and improving operational flexibility.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: January 20, 2015
    Assignee: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Patent number: 8910230
    Abstract: A method of converting legacy HFC CATV cable systems, which transmit data over the optical fiber portion of the system using the optical counterpart of analog RF waveforms, such as RF QAM waveforms transduced to corresponding optical QAM waveforms, to improved HFC CATV systems that transmit data over the optical fiber using optical fiber optimized protocols, such as Ethernet frames and other optical fiber optimized digital transport protocols. According to the method, most aspects of the legacy HFC CATV system may be retained, however at the CATV head end, the optical fiber transmitter system is replaced by an improved system that extracts the underlying symbols from legacy waveforms, packages these symbols into optical fiber optimized packets, and transmits downstream. The legacy optical fiber nodes are replaced with improved nodes capable of receiving the packets and remodulating the symbols into RF waveforms suitable for injection into the system's CATV cable.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: December 9, 2014
    Assignee: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Patent number: 8863213
    Abstract: A method to extend the downstream and upstream data carrying capability of an HFC CATV system. At the neighborhood level, the CATV cable (the primary channel) is divided into different segments connected by electrically active junctions. At the junctions, each segment is also connected to a secondary data channel, such as an optical fiber or ultrahigh RF frequency (1 GHz+) secondary channel, which can carry supplemental downstream narrowcast channels and upstream channels between a plurality of such CATV cable segments. At the junctions, some CATV primary channel RF signals such as broadcast channels are passed without interference, while certain primary channel downstream narrowcast RF channels and upstream narrowcast RF channels are precisely suppressed using adaptive cancelling methods. Such adaptive cancellation methods are superior to prior art lowpass, highpass, and bandpass filtering methods because they allow for more efficient use of limited CATV primary channel RF spectrum.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: October 14, 2014
    Assignee: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Patent number: 8826359
    Abstract: System and method to extend the upstream data capacity of an HFC CATV system by extending a “shadow” optical fiber network deeper into the various CATV cable neighborhoods, with coax fiber terminals (CFT) spaced roughly according to the distribution of CATV active devices such as RF amplifiers. The CFT can intercept local upstream data from various neighborhood sub-regions and transform this upstream data into upstream optical data, thus relieving upstream data congestion in the 5-42 MHz CATV frequency region. The system can produce an order of magnitude improvement in upstream capability, while maintaining high compatibility with legacy HFC equipment. The CFT may exist in multiple embodiments ranging from low-cost “dumb” CFT to sophisticated CFT that can additionally provide GigE to the home (GTTH) service. Methods to maintain good compatibility with legacy CMTS devices, and methods to utilize DOCSIS MAP data for more efficient data transmission are also discussed.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: September 2, 2014
    Assignee: Gainspeed, Inc.
    Inventor: Selim Shlomo Rakib
  • Patent number: 8782729
    Abstract: Producing advanced HFC CATV cable systems while easing the burden of backward compatibility. The system improves CATV data carrying capacity by moving RF QAM modulators from the cable head end to various individually or group addressed optical fiber nodes supplying neighborhood CATV cables, and sending data from the cable head IP backbone to the nodes over optical fiber as IP data packets. For high backward compatibility, the system digitizes legacy RF waveforms, or demodulates legacy QAM waveforms to QAM symbols, also transmits these over the optical fiber as IP data packets, and then reconstitutes back to original waveforms as needed. The system is thus able to easily handle legacy NTSC, FM, QPSK waveforms and do partial (QAM symbol level) compression of legacy QAM waveforms to and from multiple nodes without requiring additional optical fiber wavelengths. The system may use non-standard upstream/downstream CATV frequency splits, filter bank receivers, and FPGA/DSP/ASIC methods.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: July 15, 2014
    Assignee: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Patent number: 8773965
    Abstract: Methods to improve the data carrying capacity of CATV DOCSIS systems and other communications systems are disclosed. Communications channels may be more efficiently spaced with reduced or absent guard bands by using receivers with adaptive signal cancellation methods, equalizing circuits, or polyphase filter banks and Fast Fourier Transform signal processing methods to correct for higher levels of cross-talk. QAM type communications channels may also be utilized on a synchronized two-transmitter at a time basis by adjusting the transmitters to predefined signal levels, such as +1, ?1, +½, ?½ to enable the combined signals to be distinguished at the receiver. These two methods may be combined to create a still higher data throughput system.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: July 8, 2014
    Assignee: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Publication number: 20140150047
    Abstract: Distributed and software reconfigurable remote CMTS (CMRTS) device, based on MAC and PHY units with FPGA and DSP components, for a HFC CATV network. The various CATV RF modulators, such as QAM modulators, may be located entirely at the fiber nodes if desired. Although a basic set of CATV QAM data waveforms may optionally be transmitted to the nodes using a first fiber, in a preferred embodiment, all data may be transmitted to the nodes using other protocols such as Ethernet protocols. The nodes will extract the data specific to each neighborhood and inject this data into the cable portion of the system as RF waveforms, such as RF QAM channels. A computerized “virtual shelf” control system for managing and reconfiguring the FPGA and DSP based CMTRS units, as well as a new type of edge router based all-digital virtual head end (virtual converged cable access platform) is also disclosed.
    Type: Application
    Filed: February 3, 2014
    Publication date: May 29, 2014
    Applicant: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Publication number: 20140150041
    Abstract: Distributed and highly software reconfigurable CMTS (CMRTS) device, based on MAC and PHY units with FPGA and DSP components, for a HFC CATV network. The various CATV RF modulators, such as QAM modulators, may be divided between QAM modulators located at the cable plant, and remote QAM modulators ideally located at the fiber nodes. A basic set of CATV QAM data waveforms may optionally be transmitted to the nodes using a first fiber, and a second set of IP/on-demand data may be transmitted to the nodes using an alternate fiber or alternate fiber frequency, and optionally using other protocols such as Ethernet protocols. The nodes will extract the data specific to each neighborhood and inject this data into unused QAM channels, thus achieving improved data transmission rates through finer granularity. A computerized “virtual shelf” control system for managing and reconfiguring the FPGA and DSP based CMTRS units is also disclosed.
    Type: Application
    Filed: February 1, 2014
    Publication date: May 29, 2014
    Applicant: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Publication number: 20140101711
    Abstract: A virtual converged cable access platform (CCAP) system and method for hybrid fiber CATV (HFC) cable networks. The system uses a new type of digital optical fiber node configured to receive optical fiber data packets, and reconstitute the optical data packets into RF waveforms suitable for injection into the system's CATV cable. The system replaces the legacy HFC head end with a simplified “virtual head end”. The system's virtual head end operates using a new type of virtual CCAP controller and virtual CCAP software that in turn controls high performance edge routers. Much of the intelligence of running the HFC cable system is managed by the controller software, while the edge router manages the interface between the CATV portion of the system and outside networks. The system can handle even legacy CATV RF signals by appropriate conversion operations, while reducing power and space needs, and improving operational flexibility.
    Type: Application
    Filed: December 6, 2013
    Publication date: April 10, 2014
    Applicant: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Patent number: 8644706
    Abstract: Distributed and highly software reconfigurable CMTS (CMRTS) device, based on MAC and PHY units with FPGA and DSP components, for a HFC CATV network. The various CATV RF modulators, such as QAM modulators, may be divided between QAM modulators located at the cable plant, and remote QAM modulators ideally located at the fiber nodes. A basic set of CATV QAM data waveforms may optionally be transmitted to the nodes using a first fiber, and a second set of IP/on-demand data may be transmitted to the nodes using an alternate fiber or alternate fiber frequency, and optionally using other protocols such as Ethernet protocols. The nodes will extract the data specific to each neighborhood and inject this data into unused QAM channels, thus achieving improved data transmission rates through finer granularity. A computerized “virtual shelf” control system for managing and reconfiguring the FPGA and DSP based CMTRS units is also disclosed.
    Type: Grant
    Filed: July 22, 2012
    Date of Patent: February 4, 2014
    Assignee: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib