Patents Assigned to Gas Turbine Efficiency Sweden AB
  • Publication number: 20100147330
    Abstract: A purge drain valve including a spool spliced in a fluid line includes a control valve and an actuator coupled to the control valve for regulating fluid flow. During a washing operation, fluid flows between a supply end and a delivery end of the spool, and during a purging operation, the control valve diverts fluid entering the supply end from the delivery end towards a drain leg. A washing system includes a fluid supply coupled to an input of a wash delivery system and a delivery line coupled to an output of the wash delivery system. The purge drain may be spliced into the delivery line to permit fluid to reach a wash apparatus during a washing operation and to prevent fluid from reaching the wash apparatus during a purging operation. A rinse cycle sensor apparatus may be employed to indicate to an operator if a washing operation is complete based upon a conductivity of fluid exiting from a device being washed.
    Type: Application
    Filed: February 11, 2010
    Publication date: June 17, 2010
    Applicant: Gas Turbine Efficiency Sweden AB
    Inventors: Rodney W. Kohler, Thomas Wagner
  • Publication number: 20100116292
    Abstract: The present invention is directed to a system and method for optimizing a wash procedure. Embodiments of the present invention are directed to a system for optimizing a wash procedure. In a first embodiment, the system comprises: means for collecting a sample of fouling, the sample comprising one or more contaminates; means for identifying the one or more contaminates; and means for selecting one or more washing products for removing the one or more contaminates from a turbine. In an alternate embodiment, the present invention is directed to a method for optimizing a wash procedure. The method comprises: collecting a sample of fouling, wherein the sample comprises one or more contaminates; identifying the one or more contaminates; and selecting one or more washing products for removing the one or more contaminates from a turbine.
    Type: Application
    Filed: January 14, 2010
    Publication date: May 13, 2010
    Applicant: Gas Turbine Efficiency Sweden AB
    Inventor: THOMAS WAGNER
  • Patent number: 7712301
    Abstract: A method and system augments shaft output of gas turbine engines that can be used in multiple modes of operation. The system comprises a washing unit capable of injecting atomized water into the gas turbine engine, thereby obtaining a release of fouling material from the at least one compressor blade; and at least one water injection unit capable of injecting atomized water into the air stream of the gas turbine engine's inlet duct or at the gas turbine, under the control of a computational fluid dynamic model, in order to increase a mass flow of said air flow, wherein the power output from said gas turbine engine can be augmented.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: May 11, 2010
    Assignee: Gas Turbine Efficiency Sweden AB
    Inventor: Thomas Wagner
  • Patent number: 7712314
    Abstract: A combustor for a gas turbine is provided having a nozzle assembly located at one end and a combustion chamber defining a second end of the combustor. A venturi is positioned within the combustor, between the nozzle and the combustion chamber. The venturi defines a passageway therein having a first side facing the nozzle and a second side facing the combustion chamber. Compressed air is directed into an inlet in fluid communication with the first and second sides of the venturi passageway. The venturi passageway directs the compressed air from the inlet in opposite directions within the first and second sides of the passageway for cooling the venturi.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: May 11, 2010
    Assignee: Gas Turbine Efficiency Sweden AB
    Inventors: John Barnes, Adam Bailey, John Battaglioli, Robert Bland
  • Patent number: 7707833
    Abstract: A secondary nozzle is provided for a gas turbine. The secondary nozzle includes a flange and an elongated nozzle body extending from the flange. At least one premix fuel injector is spaced radially from the nozzle body and extends from the flange generally parallel to the nozzle body. At least one second nozzle tube is fluidly connected to the fuel source and spaced radially outward from the first nozzle tube with a proximal end fixed to the flange. The second nozzle tube has a distal end, spaced from the proximal end, with at least one aperture therein. A passageway extends between the proximal end and the distal end of the second nozzle tube, with the passageway fluidly connecting to the fuel source and the aperture.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: May 4, 2010
    Assignee: Gas Turbine Efficiency Sweden AB
    Inventors: Robert Bland, John Battaglioli
  • Patent number: 7707836
    Abstract: A combustor for a gas turbine is provided having a nozzle assembly located at one end and a combustion chamber defining a second end of the combustor. A venturi is positioned within the combustor, between the nozzle and the combustion chamber. The venturi defines an internal passageway therein having a first side facing the nozzle and a second side facing the combustion chamber. Compressed air is directed into an inlet in fluid communication with the first and second sides of the internal passageway. The internal passageway directs the compressed air from the inlet in opposite directions within the first and second sides of the internal passageway for cooling the venturi.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: May 4, 2010
    Assignee: Gas Turbine Efficiency Sweden AB
    Inventors: John Barnes, Adam Bailey, John Battaglioli, Robert Bland
  • Patent number: 7703272
    Abstract: A method and system augments shaft output of gas turbine engines that can be used in multiple modes of operation. The system comprises a washing unit capable of injecting atomized water into the gas turbine engine, thereby obtaining a release of fouling material from the at least one compressor blade; and at least one water injection unit capable of injecting atomized water into the air stream of the gas turbine engine's inlet duct or at the gas turbine, under the control of a computational fluid dynamic model, in order to increase a mass flow of said air flow, wherein the power output from said gas turbine engine can be augmented.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: April 27, 2010
    Assignee: Gas Turbine Efficiency Sweden AB
    Inventors: Thomas Wagner, Carlos Cesar
  • Publication number: 20100031977
    Abstract: A system for cleaning gas turbine engines is described. More specifically, methods and apparatuses for cleaning stationary gas turbines and on-wing turbofan engines found on aircraft are disclosed that includes a trailer-mounted, automated low-pressure water delivery system, additive and detergent injection system, nozzle and manifold technology, and active waste water effluent collector system. The system will deliver the liquid cleaning medium at a specific pressure, temperature and flow rate to optimize the atomization that occurs at the nozzles.
    Type: Application
    Filed: October 13, 2009
    Publication date: February 11, 2010
    Applicant: Gas Turbine Efficiency Sweden AB
    Inventor: Hubert E. Sales
  • Patent number: 7647777
    Abstract: A fluid delivery skid with a pre-fill system for supplying fluid has one or more stages including a first valve and a second valve, each having an open and closed position. The stages have active and inactive states to provide a desired flow rate of fluid to an apparatus for distribution of the fluid. In an active state, fluid is received in the stage and pressurized with the first valve open and the second valve closed. Further, in an active state, fluid is released with the first valve closed and the second open. In an inactive state, at least the second valve is closed. A control unit is connected to a pump unit and controls operation of the pump to regulate the stages to supply pressure at a level determined to achieve the desired flow rate.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: January 19, 2010
    Assignee: Gas Turbine Efficiency Sweden AB
    Inventor: Robert Bland
  • Patent number: 7571735
    Abstract: A nozzle assembly for cleaning turbines includes an offline cleaning nozzle and a pair of online cleaning nozzles. The offline cleaning nozzle directs cleaning fluid towards the inlet of turbine. The online cleaning nozzles direct a cleaning fluid in a fan-shaped pattern in a direction substantially parallel to the direction of air flow within the turbine's inlet air duct, and intersecting with each other. The longest dimension of the fan-shaped spray pattern is substantially parallel to the direction of air flow within the duct.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: August 11, 2009
    Assignee: Gas Turbine Efficiency Sweden AB
    Inventor: Thomas Wagner
  • Patent number: 7445677
    Abstract: A wash apparatus includes a harness assembly comprising a coupling device a coupling device for connecting one or more fluid supply lines to one or more fluid delivery lines; one or more fluid delivery lines removably attached at one end to the coupling device's first portion and positioned for delivering washing fluid directly into the gas turbine engine core as the engine is cranked; one or more fluid supply lines removably attached to the coupling device's second portion for supplying washing fluid to the harness assembly and remaining in a static position relative to the rotating fluid delivery lines; one or more harness rings attached to the one or more fluid delivery lines for spacing, stabilizing, and positioning the fluid delivery lines relative to the fan blades; and a connector for removably attaching the harness assembly directly onto the fan hub.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: November 4, 2008
    Assignee: Gas Turbine Efficiency Sweden AB
    Inventor: Peter Asplund
  • Publication number: 20080250769
    Abstract: A method and system augments shaft output of gas turbine engines that can be used in multiple modes of operation. The system comprises a washing unit capable of injecting atomized water into the gas turbine engine, thereby obtaining a release of fouling material from the at least one compressor blade; and at least one water injection unit capable of injecting atomized water into the air stream of the gas turbine engine's inlet duct or at the gas turbine, under the control of a computational fluid dynamic model, in order to increase a mass flow of said air flow, wherein the power output from said gas turbine engine can be augmented.
    Type: Application
    Filed: August 31, 2007
    Publication date: October 16, 2008
    Applicant: Gas Turbine Efficiency Sweden AB,
    Inventors: Thomas Wagner, Carlos Cesar