Abstract: A lung-assist apparatus includes a tubular housing, a tubular nozzle therein, and a first valve disposed between the housing and nozzle. The housing is implanted across a bifurcation such that the nozzle extends from a first branch communicating with a healthy region of a lung towards a main passage, and terminates proximate a lateral opening in the housing that is disposed within a second branch communicating with a damaged region of the lung. During inhalation, the first valve opens to allow air flow into the first branch, and closes during exhalation to force air through the nozzle, thereby inducing a vacuum for drawing air from the damaged region. A second valve in the second branch opens during exhalation to draw air from the diseased region, and closes during inhalation to prevent air from being drawn into the damaged region.
Abstract: Apparatus and methods are provided for reducing the volume of a lung using a clip including a plurality of tines. The clip is advanced along an interior of a bronchial passage to a predetermined location with the tines in a contracted condition. The tines are expanded outwardly to engage surrounding tissue, and then collapsed towards the contracted condition, thereby drawing the surrounding tissue inwardly to substantially close the bronchial passage from air flow therethrough. Optionally, electrical energy may be applied to the surrounding tissue after collapsing the tines to the contracted condition, thereby fusing the surrounding tissue together. The clip is then released within or removed from the passage.
Abstract: A lung-assist apparatus includes a tubular housing, a tubular nozzle therein, and a first valve disposed between the housing and nozzle. The housing is implanted across a bifurcation such that the nozzle extends from a first branch communicating with a healthy region of a lung towards a main passage, and terminates proximate a lateral opening in the housing that is disposed within a second branch communicating with a damaged region of the lung. During inhalation, the first valve opens to allow air flow into the first branch, and closes during exhalation to force air through the nozzle, thereby inducing a vacuum for drawing air from the damaged region. A second valve in the second branch opens during exhalation to draw air from the diseased region, and closes during inhalation to prevent air from being drawn into the damaged region.
Abstract: A lung-assist apparatus includes a tubular housing, a tubular nozzle therein, and a first valve disposed between the housing and nozzle. The housing is implanted across a bifurcation such that the nozzle extends from a first branch communicating with a healthy region of a lung towards a main passage, and terminates proximate a lateral opening in the housing that is disposed within a second branch communicating with a damaged region of the lung. During inhalation, the first valve opens to allow air flow into the first branch, and closes during exhalation to force air through the nozzle, thereby inducing a vacuum for drawing air from the damaged region. A second valve in the second branch opens during exhalation to draw air from the diseased region, and closes during inhalation to prevent air from being drawn into the damaged region.