Abstract: A biocompatible, covalently cross-linked, polymer that is obtained by reacting an electrophilically activated polyoxazoline (EL-POX) with a nucleophilic cross-linking agent is disclosed. The EL-POX comprises m electrophilic groups; and the nucleophilic cross-linking agent comprises n nucleophilic groups, wherein the m electrophilic groups are capable of reacting with the n nucleophilic groups to form covalent bonds; wherein m?2, n?2 and m+n?5; wherein at least one of the m electrophilic groups is a pendant electrophilic group and/or wherein m?3; and wherein to the EL-POX comprises an excess amount of electrophilic groups relative to the amount of nucleophilic groups contained in the nucleophilic cross-linking agent. Biocompatible medical products and kits comprising the cross-linked POX-polymers are also disclosed.
Type:
Application
Filed:
April 8, 2019
Publication date:
August 1, 2019
Applicant:
GATT Technologies B.V.
Inventors:
Richard HOOGENBOOM, Johannes Caspar Mathias Elizabeth BENDER, Jan Cornelis Maria VAN HEST
Abstract: A process of preparing an adhesive haemostatic product is provided. The process comprises: (a) coating a porous solid substrate with a coating liquid that comprises an electrophilically activated polyoxazoline (EL-POX) and a solvent to produce a coated substrate; and (b) removing the solvent from the coated substrate. The EL-POX comprises at least 2 reactive electrophilic groups. The process enables the application of an EL-POX coating that leaves the pore structure of the substrate largely intact so that the ability of the porous substrate to absorb body fluids, such as blood, remains essentially unaffected. The EL-POX coated haemostatic product obtained by the present process has excellent adhesive properties due to the presence of electrophilic reactive groups that are capable of reacting with e.g. amine groups that are naturally present in tissue, under the formation of covalent bonds.
Type:
Application
Filed:
December 19, 2018
Publication date:
May 2, 2019
Applicant:
GATT Technologies B.V.
Inventors:
Johannes Caspar Mathias Elizabeth BENDER, Marcel Alexander BOERMAN
Abstract: A process of preparing an adhesive haemostatic product is provided. The process comprises: (a) coating a porous solid substrate with a coating liquid that comprises an electrophilically activated polyoxazoline (EL-POX) and a solvent to produce a coated substrate; and (b) removing the solvent from the coated substrate. The EL-POX comprises at least 2 reactive electrophilic groups. The process enables the application of an EL-POX coating that leaves the pore structure of the substrate largely intact so that the ability of the porous substrate to absorb body fluids, such as blood, remains essentially unaffected. The EL-POX coated haemostatic product obtained by the present process has excellent adhesive properties due to the presence of electrophilic reactive groups that are capable of reacting with e.g. amine groups that are naturally present in tissue, under the formation of covalent bonds.
Type:
Application
Filed:
October 5, 2015
Publication date:
August 9, 2018
Applicant:
GATT Technologies B.V.
Inventors:
Johannes Caspar Mathias Elizabeth BENDER, Marcel Alexander BOERMAN
Abstract: One aspect of the invention relates to a biocompatible medical product comprising at least 1% by weight of dry matter of a covalently cross-linked polymer that is obtained by reacting a nucleophilically activated polyoxazoline (NU-PDX) with an electrophilic cross-linking agent other than an electrophilically activated polyoxazoline, said NU-PDX comprising m nucleophilic groups; and said electrophilic cross-linking agent comprising n electrophilic groups, wherein the m nucleophilic groups are capable of reaction with the n electrophilic groups to form covalent bonds; wherein m?2, n?2 and m+n?5; and wherein the NU-PDX comprises at least 30 oxazoline units in case the electrophilic cross-linking agent is an isocyanate. Also provided is a kit for producing the aforementioned biocompatible cross-linked polymer. The biocompatible cross-linked polymers according to the invention have excellent implant and/or sealing characteristics.
Type:
Grant
Filed:
July 14, 2016
Date of Patent:
January 16, 2018
Assignee:
GATT Technologies B.V.
Inventors:
Johannes Caspar Mathias Elizabeth Bender, Richard Hoogenboom, Jan Cornelis Maria Van Hest, Harry Van Goor