Abstract: A method and apparatus for measuring a liquid level of a Spent Fuel Pool of a Light Water Reactor without using electrical power. The method and apparatus may use a pressurized gas source connected to tubing or piping that may discharge near the bottom of the Spent Fuel Pool. The system may include a flow meter and throttle valve that may be used to determine a required gas pressure to provide a specified flow rate of gas for known Spent Fuel Pool water levels. By obtaining calibration data points of pressure and flow for multiple Spent Fuel Pool water levels, a calibration curve may be obtained that allows for the measurement of Spent Fuel Pool liquid level using the system, without the need for electrical power.
Abstract: A method and system for an alternate energy removal path for a reactor pressure vessel (RPV) of a light water reactor. A pair of manually operated containment isolation valves, one located inside and one located outside of primary containment, are used to open and close a steam extraction line that is fluidly coupled between the RPV and a heat sink. The heat sink is located outside of primary containment. A source of external electrical power is not required to operate the system or perform the method.
Abstract: A method of cleaning a submerged surface covered by a liquid medium includes injecting a cleaning liquid with a submerged fluid jet through the liquid medium at the submerged surface. The method may also include introducing at least one of a non-reactive gas and a reactive gas with the cleaning liquid through the submerged fluid jet.
Type:
Application
Filed:
September 11, 2012
Publication date:
March 13, 2014
Applicant:
GE-HITACHI NUCLEAR ENERGY AMERICAS LLC
Inventors:
Eric P. LOEWEN, Brian S. TRIPLETT, Brett J. DOOIES
Abstract: A method and apparatus for an alternative cooling system used to cool the suppression pool of a Boiling Water Reactor (BWR) nuclear reactor. The cooling system includes a cooling coil in an isolation condenser located at an elevation that is above the suppression pool. The isolation condenser is connected to the suppression pool via inlet and outlet pipes. The system may provide a natural convection flow of fluids between the suppression pool and the cooling coils to passively cool fluid from the suppression pool without requiring external electrical power.
Type:
Application
Filed:
September 12, 2012
Publication date:
March 13, 2014
Applicant:
GE-HITACHI NUCLEAR ENERGY AMERICAS LLC
Inventors:
Robert J. GINSBERG, John R. BASS, Robert A. AYER, Richard M. ROGERS
Abstract: A support clamp assembly for mechanically securing a thermal sleeve to an elbow conduit in a jet pump of a nuclear reactor vessel, the support clamp assembly including: a tension shaft having a first end extendable through an opening in a sidewall of the elbow conduit and an opposite end with a head; a cruciform assembly having a base with an opening to receive the tension shaft and to abut the head of the shaft, wherein the cruciform assembly seats in the thermal sleeve; a boss slidable over the first end of the tension shaft and having a curved surface seating an outside surface of the elbow conduit, and a coupling device engaging the first end of the tension shaft and abutting the boss, wherein the coupling device places the tension shaft under tension to secure the cruciform assembly to the thermal sleeve and the boss to the elbow conduit.
Abstract: An elbow clamp assembly structurally supports or replaces a connection between a main pipe and an elbow pipe. The elbow clamp assembly includes an upper clamp body and a lower clamp body securable on opposite sides of the main pipe in facing relation. The upper and lower clamp bodies are connected by a clamp bolt extendable through the main pipe. An elbow boss is securable to the elbow pipe, and a cross bolt is extendable through the elbow pipe and connected between the elbow boss and the clamp bolt.
Abstract: A pair of linear arrays of gamma thermometer (GT) sensors arranged in a nuclear reactor core including: a first linear array of GT sensors, wherein the GT sensors are arranged asymmetrically along a length of the first linear array; a second linear array of GT sensors, wherein the GT sensors are arranged asymmetrically along the second linear array and wherein the second linear array of GT sensors is asymmetrical with respect to the first linear array of GT sensors, and the first linear array positioned in the reactor core at a first core location and the second instrument housing positioned at a second core location, wherein a line of symmetry of the core extends through a center of the core and the first core location is the same horizontal distance from the line of symmetry as the second core location.
Type:
Grant
Filed:
May 7, 2012
Date of Patent:
February 4, 2014
Assignee:
GE-Hitachi Nuclear Energy Americas LLC
Inventors:
James Edward Fawks, Gabriel Francisco Cuevas Vivas
Abstract: Example embodiments are directed to methods and apparatuses for generating desired isotopes within water rods of nuclear fuel assemblies. Example methods may include selecting a desired irradiation target based on the target's properties, loading the target into a target rod based on irradiation target and fuel assembly properties, exposing the target rod to neutron flux, and/or harvesting isotopes produced from the irradiation target from the target rod. Example embodiment target rods may house one or more irradiation targets of varying types and phases. Example embodiment securing devices include a ledge collar and/or bushing that support target rods within a water rod and permit moderator/coolant flow through the water rod. Other example embodiment securing devices include one or more washers with one or more apertures drilled therein to hold one or more example embodiment target rods in a water rod while permitting coolant/moderator to flow through the water rod.
Type:
Grant
Filed:
July 15, 2009
Date of Patent:
January 28, 2014
Assignee:
GE-Hitachi Nuclear Energy Americas LLC
Inventors:
David Grey Smith, William Earl Russell, II
Abstract: Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly.
Type:
Grant
Filed:
December 23, 2010
Date of Patent:
January 28, 2014
Assignee:
GE-Hitachi Nuclear Energy Americas LLC
Inventors:
Eugene R. Koehl, Laurel A. Barnes, Stanley G. Wiedmeyer, Mark A. Williamson, James L. Willit
Abstract: An apparatus for removing a dry tube assembly includes a mounting structure configured to mount the apparatus to a top guide of a reactor vessel, a clamping assembly configured to engage the dry tube assembly, and a positioning assembly that is configured to position and rotate the clamping assembly relative to the dry tube assembly. The dry tube assembly is buckled and removed without exercising a joint.
Type:
Grant
Filed:
April 14, 2009
Date of Patent:
January 21, 2014
Assignee:
GE-Hitachi Nuclear Energy Americas LLC
Inventors:
C. Alan Peet, James E. Burner, Edward L. Chaney, William L. Goldsworth
Abstract: A method for processing a coolant includes filtering a coolant using a first filtration system to generate a first filtered material, and filtering the filtered coolant using a second filtration system to generate a second filtered material. The second filtration system is different from the first filtration system. The first filtered material is transferred to a first waste treatment container and converted to a first waste product for permanent disposal, and the second waste product is transferred to a second waste treatment container and converted to a second waste product for permanent disposal.
Type:
Application
Filed:
June 29, 2012
Publication date:
January 2, 2014
Applicant:
GE-HITACHI NUCLEAR ENERGY AMERICAS LLC
Inventors:
Eric P. Loewen, John F. Berger, Brett J. Dooies
Abstract: A method of fabricating a liquid-metal coolant includes adding nanoparticles to the liquid-metal coolant to change neutronic properties of the liquid-metal coolant. The nanoparticles have neutronic properties different from that of the liquid-metal coolant.
Abstract: A bus bar electrical feedthrough for an electrorefiner system may include a retaining plate, electrical isolator, and/or contact block. The retaining plate may include a central opening. The electrical isolator may include a top portion, a base portion, and a slot extending through the top and base portions. The top portion of the electrical isolator may be configured to extend through the central opening of the retaining plate. The contact block may include an upper section, a lower section, and a ridge separating the upper and lower sections. The upper section of the contact block may be configured to extend through the slot of the electrical isolator and the central opening of the retaining plate. Accordingly, relatively high electrical currents may be transferred into a glovebox or hot-cell facility at a relatively low cost and higher amperage capacity without sacrificing atmosphere integrity.
Type:
Grant
Filed:
December 22, 2011
Date of Patent:
December 3, 2013
Assignee:
GE-Hitachi Nuclear Energy Americas LLC
Inventors:
Mark Á Williamson, Stanley G. Wiedmeyer, James L. Willit, Laurel A. Barnes, Robert J. Blaskovitz
Abstract: A method and apparatus for providing a Boiling Water Reactor (BWR) jet pump inlet-mixer integral slip joint clamp to constrain the inlet mixer and diffuser to mitigate inlet mixer flow induced vibration of a BWR jet pump assembly. The slip joint clamp includes horizontally projecting flanges with vertical sidewalls that protrude toward a lowest distal end of the inlet mixer. Fasteners penetrating the flanges provide a biasing load on the diffusers by being tightened to press against an upper crown on the diffuser. One or more flanges may be used. Laterally disposed gaps between the flanges may provide a clearance for guide ears of the diffuser to fit between the flanges.
Abstract: A slip joint of the jet pump assembly inlet-mixer is the interface between a diffuser and an inlet-mixer. The diffuser is coated with a first hardfacing alloy, and the inlet-mixer is coated with a second hardfacing alloy different from the first hardfacing alloy. The first hardfacing alloy may be a cobalt-based alloy and the second hardfacing alloy may be a cobalt-free alloy, i.e., at least one of an iron-based and nickel-based hardfacing alloy.
Type:
Application
Filed:
May 23, 2012
Publication date:
November 28, 2013
Applicant:
GE-HITACHI NUCLEAR ENERGY AMERICAS LLC
Inventors:
Catherine Procik Dulka, Henry P. Offer, Mark O. Lenz, Elizabeth B. Umhoefer, Mark S. Godfrey
Abstract: A mechanical connection between adjacent components of a system may include a first component of the system, a second component of the system, and a multiple degree-of-freedom connection between the first and second components. The multiple degree-of-freedom connection may have at least four degrees of freedom. A method for establishing a mechanical connection between adjacent components of a system may include disposing a first component of the system adjacent to a second component of the system, and connecting the first component to the second component using a multiple degree-of-freedom connection. The multiple degree-of-freedom connection may have at least four degrees of freedom.
Abstract: In one embodiment, a fuel bundle for a liquid metal cooled reactor includes a channel, a nose assembly secured to a lower end of the channel, a plurality of fuel rods disposed within the channel, and an internal mixer disposed within the channel above the plurality of fuel rods. The internal mixer includes peripheral flow control members and interior flow control members. The peripheral flow control members are located near walls of the channel, and the interior flow control members are located towards a longitudinal center of the housing. At least one of the peripheral flow control members is configured to direct liquid metal flowing through the channel towards an interior of the channel, and at least one of the interior flow control members is configured to direct liquid metal flowing through the channel away from the interior of the channel.
Type:
Application
Filed:
May 15, 2012
Publication date:
November 21, 2013
Applicant:
GE-HITACHI NUCLEAR ENERGY AMERICAS LLC
Inventors:
Eric P. Loewen, Brian S. Triplett, Brett J. Dooies, Scott L. Pfeffer
Abstract: A heat transfer system for a nuclear plant may include a piping system that includes first and second connectors, heat exchanger, pump, and power source. The heat transfer system may not be connected to the plant during normal power operations. The power source may be independent of a normal electrical power distribution system for the plant and may be configured to power the pump. The piping system may be configured to connect the heat exchanger and pump. The connectors may be configured to connect the heat transfer system to a fluid system of the plant. When the connectors connect the heat transfer system to the fluid system, the heat transfer system may be configured to receive fluid from the fluid system of the plant via the first connector, to pump the fluid through the heat exchanger, and to return the fluid to the fluid system via the second connector.
Type:
Application
Filed:
May 16, 2012
Publication date:
November 21, 2013
Applicant:
GE-Hitachi Nuclear Energy Americas LLC
Inventors:
Robert A. AYER, Robert J. GINSBERG, John R. BASS
Abstract: An apparatus for controlling movement of a first component integrated with a second component may include a first clamp configured to engage the first component, a second clamp configured to engage the second component, and a plurality of connectors configured to connect the first and second clamps. The connectors may allow movement of the first clamp relative to the second clamp in a first direction between the first and second clamps. The connectors may limit movement of the first clamp relative to the second clamp in a second direction perpendicular to the first direction.
Abstract: A system and a method for a commercial nuclear repository that turns heat and gamma radiation from spent nuclear fuel into a valuable revenue stream. Gamma radiation from the spent nuclear fuel of the repository may be used to irradiate and sterilize food and other substances. Gamma radiation may also be used to improve the properties of target substances. Additionally, heat decay from the spent nuclear fuel of the repository may be harnessed to heat materials or fluids. The heated fluids may be used, for instance, to produce steam that may make electricity. The heating of working fluids for use in processes, such as heated fluid streams for fermentation or industrial heating, may be transported out of the repository and co-mingled with other heat input, or other fluids.
Type:
Application
Filed:
May 11, 2012
Publication date:
November 14, 2013
Applicant:
GE-HITACHI NUCLEAR ENERGY AMERICAS, LLC