Abstract: Hoisting systems are provided for mounting a hub on top of a tower, the hub carrying a first and a second blade forming a bunny ears configuration, and a third blade. The system comprises a crane for pulling up the hub to the top of the tower, and a blade support for supporting the third blade at a supported blade portion. The system further comprises a hub-blade coupling device configured to assist in coupling a root portion of the third blade to a coupling portion of the hub. The hub-blade coupling device comprises a hub mount structure configured to be removably fixed to the hub, a blade mount structure configured to be removably fixed to the third blade, and a connector rotatably coupling the hub mount structure and the blade mount structure. Methods are provided of mounting a hub on top of a tower by using any of said systems.
Abstract: Multiphase generator-conversion systems and clusters are disclosed. The multiphase generator-conversion systems include a multiphase n-stator generator, n conversion lines and a transformer module. Each n conversion line is coupled to the plurality of phase lines of one of the n stators, respectively. Each conversion line comprises a rectification module, coupled to the respective plurality of phase lines, configured to receive a multiphase AC voltage and generate a first DC voltage at an output. A dc/ac inverter is coupled to the output of the respective rectification module. The dc/ac inverter receives the first dc voltage and generates a single-phase AC voltage at an output. The transformer module is arranged to receive the n single-phases of the dc/ac inverters and generate an n-phase AC voltage at an output. This voltage is input to a single diode rectifier. Multiphase generator-conversion clusters include multiphase generator-conversion systems arranged to be coupled to a diode rectifier.
Abstract: A method is disclosed for manufacturing a rotating part which belongs to a hydraulic machine of an installation for converting hydraulic energy into electrical or mechanical energy. This rotating part includes blades distributed about an axis of rotation of the rotating part and extending from a leading edge to a trailing edge. This method can include manufacturing, in steel, a first part of each blade, which defines the leading edge thereof, manufacturing a second part of the blade in a material other than steel and attaching this to the first part of the blade so as to form a trailing edge.
Abstract: This Francis-type runner for a turbine includes a crown, a band and blades the number of which is not a prime number. These blades are made as one piece and extend between the crown and the band, and between a leading edge and a trailing edge each trailing edge has its concave face facing upstream over its entire length. In addition, first blades are uniformly distributed about a central axis of the runner in a number equal to a divisor of the total number of blades. Each of these first blades has a point of attachment of its trailing edge to the crown that is lowered by comparison with the point of attachment of the trailing edge to the crown of second blades, which are likewise part of the runner.
Abstract: Method of operating a wind turbine rotational system having a plurality of drives and a central control system (CCS), each drive having a motor and an electronic converter. The CCS sends speed and torque setpoints to the electronic converters, and the electronic converters drive the motors in accordance with said setpoints. The method comprises designating one of the drives as master drive and the other drives as slave drives. The method also comprises the CCS determining a master speed setpoint and a master torque setpoint, and sending said setpoints to the master drive. The method further comprises the CCS obtaining the real torque and speed of the motor of the master drive and sending a slave speed setpoint and a slave torque setpoint to each slave drive, said slave speed setpoint based on the master speed setpoint and said slave torque setpoint equal to the obtained real torque of the master drive.
Abstract: A wedge mechanism including at least one wedge element and a guide member. The guide member is attached to the second assembly and adapted for receiving the wedge element in a way that and at least an inactive position of the mechanism is defined where the first and second assemblies can be detached from each other, and an active position where at least one of the wedge element and the guide member presses against two different sectors of the first assembly such that the first assembly and the second assembly remain attached to each other.
Type:
Grant
Filed:
April 27, 2015
Date of Patent:
October 16, 2018
Assignee:
GE RENEWABLE TECHNOLOGIES WIND B.V.
Inventors:
Adrian Bueno De Santiago, Santiago Claramunt Estecha, César Muñiz Casais
Abstract: Multiphase generator-conversion systems are disclosed. The system includes a multiphase generator having one rotor and m+1 number of electromagnetically coupled stators, each stator having a plurality of phase legs. The system includes a converter having m+1 conversion lines, each conversion line connected to the plurality of phase legs of one of the m+1 stators. Each conversion line has a rectification module. At most m of the m+1 rectification modules has an active filtering converter. At least one of the m+1 rectification modules has a passive rectifier. At least one of the active filtering converters is configured to directly control its current to vary the magnetic flux of the stator to which it is connected and indirectly affect the magnetic flux of the rest of the stators through the electromagnetic coupling. Also disclosed are wind turbines that include generation conversion systems and methods of mitigating harmonics in multi-phase generator-conversion systems.
Type:
Grant
Filed:
December 12, 2014
Date of Patent:
December 5, 2017
Assignee:
GE RENEWABLE TECHNOLOGIES
Inventors:
Gomis Bellmunt Oriol, De Prada Gil Mikel, Diaz Gonzalez Francisco, Prieto Araujo Edardo