Patents Assigned to Gel-Del Technologies, Inc.
  • Patent number: 10016534
    Abstract: The present invention relates to protein biocoacervates and biomaterials vessel graft systems used in cardiovascular applications and other medical applications, the components utilized in the vessel graft systems and the methods of making and using such systems. More specifically the present invention relates to protein biocoacervates and biomaterials vessel graft systems used in various medical applications and/or the devices used in such vessel graft systems including, but not limited to, vessel grafts as drug delivery devices for the controlled release of pharmacologically active agents, tubular grafts, vascular grafts, protein biomaterial sutures and biomeshes, protein biomaterial adhesives and glues, and other biocompatible biocoacervate or biomaterial devices used in the vessel graft systems of the present invention.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: July 10, 2018
    Assignee: Gel-Del Technologies, Inc.
    Inventor: David B. Masters
  • Patent number: 9999705
    Abstract: The present invention relates to protein biocoacervates and biomaterials and the methods of making and using protein biocoacervates and biomaterials. More specifically the present invention relates to protein biocoacervates and biomaterials that may be utilized for various medical applications including, but not limited to, drug delivery devices for the controlled release of pharmacologically active agents, coated medical devices (e.g. stents, valves . . . ), vessels, tubular grafts, vascular grafts, wound healing devices including protein suture biomaterials and biomeshes, dental plugs and implants, skin/bone/tissue grafts, tissue fillers, protein biomaterial adhesion prevention barriers, cell scaffolding and other biocompatible biocoacervate or biomaterial devices.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: June 19, 2018
    Assignee: Gel-Del Technologies, Inc.
    Inventors: David B. Masters, Eric P. Berg
  • Patent number: 9107937
    Abstract: Biomaterials and the related methods of making and using biomaterials for wound treatment. The biomaterial defines an amorphous material that is crosslinked with one or more crosslinking agents an includes aggregated complexes having homogenously distributed biocoacervated components. The biocoacervated components include one or more soluble or solubilized primary proteins combined with one or more glycosaminoglycans and one or more biocompatible solvents. The biomaterial can be utilized by administering the biomaterial to a wound.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: August 18, 2015
    Assignee: Gel-Del Technologies, Inc.
    Inventors: David B. Masters, Eric P. Berg
  • Patent number: 8871267
    Abstract: The present invention relates to protein matrix materials and devices and the methods of making and using protein matrix materials and devices. More specifically the present invention relates to protein matrix materials and devices that may be utilized for various medical applications including, but not limited to, drug delivery devices for the controlled release of pharmacologically active agents, encapsulated or coated stent devices, vessels, tubular grafts, vascular grafts, wound healing devices including protein matrix suture material and meshes, skin/bone/tissue grafts, biocompatible electricity conducting matrices, clear protein matrices, protein matrix adhesion prevention barriers, cell scaffolding and other biocompatible protein matrix devices. Furthermore, the present invention relates to protein matrix materials and devices made by forming a film comprising one or more biodegradable protein materials, one or more biocompatible solvents and optionally one or more pharmacologically active agents.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: October 28, 2014
    Assignee: Gel-Del Technologies, Inc.
    Inventor: David B. Masters
  • Patent number: 8623393
    Abstract: The containment and fixation system of the present invention generally includes a biomatrix sleeve, biomatrix particles or combinations thereof made of a biomatrix material. The biomatrix material is comprised of one or more biocompatible proteins and one or more biocompatible solvents. The biomatrix material utilized in the sleeve and/or particles may also include one or more pharmacologically active agents like therapeutic biochemicals such as a bone mending biochemical (e.g. hydroxyapatite) or an angiogenic growth factor (e.g. BMP).
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: January 7, 2014
    Assignee: Gel-Del Technologies, Inc.
    Inventors: David B. Masters, Eric Peter Berg
  • Patent number: 8529939
    Abstract: The present invention relates to mucoadhesive drug delivery devices and their methods of preparation and use. More specifically the present invention relates to mucoadhesive drug delivery devices comprising one or more biocompatible purified proteins combined with one or more biocompatible solvents and one or more mucoadhesive agents. The mucoadhesive drug delivery devices may also include one or more pharmacologically active agents. The drug delivery devices of the present invention adhere to mucosal tissue, thereby providing a vehicle for delivery of the pharmacologically active agent(s) through such tissue.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: September 10, 2013
    Assignee: Gel-Del Technologies, Inc.
    Inventors: David B. Masters, Eric P. Berg
  • Patent number: 8465537
    Abstract: A stent system having zero or more inner stents inserted into an outer stent. The inner stents and outer stent are separated and/or encapsulated by a protein-based material of a protein matrix and/or a set biocoacervate, each one or more biocompatible proteins and one or more biocompatible solvents. The protein-based material may also include one or more carbohydrates and one or more pharmacologically active agents.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: June 18, 2013
    Assignee: Gel-Del Technologies, Inc.
    Inventors: David B. Masters, Eric P. Berg
  • Publication number: 20120282300
    Abstract: The present invention relates to protein biocoacervates and biomaterials and the methods of making and using protein biocoacervates and biomaterials. More specifically the present invention relates to protein biocoacervates and biomaterials that may be utilized for various medical applications including, but not limited to, drug delivery devices for the controlled release of pharmacologically active agents, coated medical devices (e.g. stents, valves . . . ), vessels, tubular grafts, vascular grafts, wound healing devices including protein suture biomaterials and biomeshes, dental plugs and implants, skin/bone/tissue grafts, tissue fillers, protein biomaterial adhesion prevention barriers, cell scaffolding and other biocompatible biocoacervate or biomaterial devices.
    Type: Application
    Filed: March 30, 2012
    Publication date: November 8, 2012
    Applicant: GEL-DEL TECHNOLOGIES, INC.
    Inventors: David B. Masters, Eric P. Berg
  • Patent number: 8153591
    Abstract: The present invention relates to protein biocoacervates and biomaterials and the methods of making and using protein biocoacervates and biomaterials. More specifically the present invention relates to protein biocoacervates and biomaterials that may be utilized for various medical applications including, but not limited to, drug delivery devices for the controlled release of pharmacologically active agents, coated medical devices (e.g. stents, valves . . . ), vessels, tubular grafts, vascular grafts, wound healing devices including protein suture biomaterials and biomeshes, dental plugs and implants, skin/bone/tissue grafts, tissue fillers, protein biomaterial adhesion prevention barriers, cell scaffolding and other biocompatible biocoacervate or biomaterial devices.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: April 10, 2012
    Assignee: Gel-Del Technologies, Inc.
    Inventors: David B. Masters, Eric P. Berg
  • Publication number: 20120041539
    Abstract: The present invention relates to protein biocoacervates and biomaterials vessel graft systems used in cardiovascular applications and other medical applications, the components utilized in the vessel graft systems and the methods of making and using such systems. More specifically the present invention relates to protein biocoacervates and biomaterials vessel graft systems used in various medical applications and/or the devices used in such vessel graft systems including, but not limited to, vessel grafts as drug delivery devices for the controlled release of pharmacologically active agents, tubular grafts, vascular grafts, protein biomaterial sutures and biomeshes, protein biomaterial adhesives and glues, and other biocompatible biocoacervate or biomaterial devices used in the vessel graft systems of the present invention.
    Type: Application
    Filed: November 17, 2009
    Publication date: February 16, 2012
    Applicant: Gel-Del Technologies, Inc.
    Inventor: David B Masters
  • Publication number: 20100196478
    Abstract: The present invention relates to protein matrix materials and devices and the methods of making and using protein matrix materials and devices. More specifically the present invention relates to protein matrix materials and devices that may be utilized for various medical applications including, but not limited to, drug delivery devices for the controlled release of pharmacologically active agents, encapsulated or coated stent devices, vessels, tubular grafts, vascular grafts, wound healing devices including protein matrix suture material and meshes, skin/bone/tissue grafts, biocompatible electricity conducting matrices, clear protein matrices, protein matrix adhesion prevention barriers, cell scaffolding and other biocompatible protein matrix devices. Furthermore, the present invention relates to protein matrix materials and devices made by forming a film comprising one or more biodegradable protein materials, one or more biocompatible solvents and optionally one or more pharmacologically active agents.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 5, 2010
    Applicant: GEL-DEL TECHNOLOGIES, INC.
    Inventor: David B. MASTERS
  • Publication number: 20100143487
    Abstract: The present invention relates to biocompatible protein-based particles and their methods of preparation and use. More specifically the present invention relates protein-based particles including protein matrix, spread matrix and/or biocoacervate materials derived from one or more biocompatible purified proteins combined with one or more biocompatible solvents that are used to replace or repair tissue and/or bone in treatments for spinal disc(s), joint(s) (e.g. knee, hip, finger, ankle, elbow, shoulder . . . ) and organ(s) (e.g. bladder, lips, vagina, penis, urethra . . . ). In various embodiments of the present invention the protein-based particles may also include one or more pharmacologically active agents and/or one or more additives.
    Type: Application
    Filed: December 26, 2008
    Publication date: June 10, 2010
    Applicant: GEL-DEL TECHNOLOGIES, INC.
    Inventor: David B. Masters
  • Patent number: 7662409
    Abstract: The present invention relates to protein matrix materials and devices and the methods of making and using protein matrix materials and devices. More specifically the present invention relates to protein matrix materials and devices that may be utilized for various medical applications including, but not limited to, drug delivery devices for the controlled release of pharmacologically active agents, encapsulated or coated stent devices, vessels, tubular grafts, vascular grafts, wound healing devices including protein matrix suture material and meshes, skin/bone/tissue grafts, biocompatible electricity conducting matrices, clear protein matrices, protein matrix adhesion prevention barriers, cell scaffolding and other biocompatible protein matrix devices. Furthermore, the present invention relates to protein matrix materials and devices made by forming a film comprising one or more biodegradable protein materials, one or more biocompatible solvents and optionally one or more pharmacologically active agents.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: February 16, 2010
    Assignee: Gel-Del Technologies, Inc.
    Inventor: David B. Masters
  • Publication number: 20020106410
    Abstract: The present invention relates to an improved method of making drug delivery devices for the controlled release of pharmacologically active agents and further, to drug delivery devices made by such method. More specifically, the present invention relates to a method of forming a film comprising one or more biodegradable polymeric materials, one or more pharmacologically active agents, and one or more biocompatible solvents. The film is then partially dried, rolled or otherwise shaped, and then compressed. In this manner, the amount of pharmacologically active agent(s) that can be incorporated into the drug delivery device is increased and the pharmacologically active agent(s) is/are substantially homogeneously distributed throughout the drug delivery device. As a result, the release characteristics of the pharmacologically active agent from the drug delivery device are enhanced.
    Type: Application
    Filed: December 11, 2001
    Publication date: August 8, 2002
    Applicant: Gel-Del Technologies, Inc.
    Inventor: David B. Masters
  • Patent number: 6342250
    Abstract: The present invention relates to an improved method of making drug delivery devices for the controlled release of pharmacologically active agents and further, to drug delivery devices made by such method. More specifically, the present invention relates to a method of forming a film comprising one or more biodegradable polymeric materials, one or more pharmacologically active agents, and one or more biocompatible solvents. The film is then partially dried, rolled or otherwise shaped, and then compressed. In this manner, the amount of pharmacologically active agent(s) that can be incorporated into the drug delivery device is increased and the pharmacologically active agent(s) is/are substantially homogeneously distributed throughout the drug delivery device. As a result, the release characteristics of the pharmacologically active agent from the drug delivery device are enhanced.
    Type: Grant
    Filed: September 25, 1998
    Date of Patent: January 29, 2002
    Assignee: Gel-Del Technologies, Inc.
    Inventor: David B. Masters