Abstract: A system for fixation of fractures is disclosed. The system comprises a chassis and one or more fixation elements in the form of screws and/or pins. Each fixation element is received in the chassis in such a way that it is locked by friction regarding movement in axial, rotational and angular directions. The friction is preferably given by the material of the chassis having an elasticity giving locking effect by friction on the fixation elements.
Abstract: A cannulated screw is employed to fasten an intramedullary nail to a bone of a patient. A guide is disposed within the intramedullary nail and registered with a preformed securing hole in the nail. Preferably, the guide is fabricated from a bio-absorbable material such as polyglycolic acid and fixedly registered to the distal securing holes. A flexible drill shaft is directed to the selected securing hole by the guide. The drill is operated to drill through the bone cortex and soft tissue of the patient to exit the skin of the patient. A cannulated fixation screw is fitted over the exposed drill bit and is then driven into the patient, guided by the drill bit back to the selected securing hole. The drill bit is then extracted and the cannulated screw is driven through the intramedullary nail into the opposite cortex of the bone. After all of the fixation screws have been placed, the intramedullary nail is fastened to the bone.
Abstract: A bone fastener is adapted to deliver biologically active substances to a bone site. An applicator is saturated with the substance and is disposed within an inner cavity of the fastener, near the bone site. Channels through the body of the fastener permit the substance to flow to the bone site. The substance can include therapeutic drugs, such as antibiotics, analgesics, bone morphogenic proteins, DNA, chemotherapy drugs and angiogenesis factors.
Type:
Grant
Filed:
November 9, 1995
Date of Patent:
February 16, 1999
Assignee:
General Orthopedics
Inventors:
Alan R. Spievack, Douglas A. Fogg, Christopher P. Messina