Patents Assigned to Genesis Photonics
  • Patent number: 9801274
    Abstract: A light emitting device includes a light source, a light source carrier and a circuit board. The circuit board is configured to provide power to the light source via the light source carrier. The circuit board includes a metal substrate having an upper surface, the upper surface including a first electrode area, a second electrode area and a heat conduction area; a first metal electrode formed on the first electrode area; a first insulation layer formed between the first metal electrode and the metal substrate; a second metal electrode formed on the second electrode area; a second insulation layer formed between the second metal electrode and the metal substrate; and a solder resist layer covering the upper surface of the metal substrate; wherein the heat conduction area is exposed from the solder resist layer, and the heat conduction area is connected to the light source carrier.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: October 24, 2017
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Hao-Chung Lee, Yu-Feng Lin, Meng-Ting Tsai
  • Publication number: 20170294555
    Abstract: A semiconductor structure includes a first-type doped semiconductor layer, a light emitting layer, a second-type doped semiconductor layer comprising AlxInyGal-x-yN layers, at least one GaN based layer, and an ohmic contact layer. The light emitting layer is disposed on the first-type doped semiconductor layer, and the second-type doped semiconductor layer is disposed on the light emitting layer. The AlxInyGal-x-yN layers stacked on the light emitting layer, where 0<x<1, 0?y<1, and 0<x+y<1, and the GaN based layer interposed between two of the AlxInyGal-x-yN layers, and the ohmic contact layer is disposed on the AlxInyGal-x-yN layers.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 12, 2017
    Applicant: Genesis Photonics Inc.
    Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
  • Patent number: 9786813
    Abstract: A thin-film flip-chip light emitting diode (LED) having a roughened surface and a method for manufacturing the same are provided. First, a substrate having a patterned structure on a surface of the substrate is provided, and the surface is roughened. A first semiconductor layer is then formed on the surface; a light emitting structure layer is then formed on the first semiconductor layer; a second semiconductor layer is then formed on the light emitting structure layer. The first and second semiconductor layers possess opposite electrical characteristics. A first contact electrode and a second contact electrode are then formed on the first semiconductor layer and the second semiconductor layer, respectively. Finally, a sub-mount is formed on the first and second contact electrodes, and the substrate is removed to form the thin-film flip-chip LED having the roughened surface. Here, the light emitting efficiency of the thin-film flip-chip LED is improved.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: October 10, 2017
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Fan Li, Jing-En Huang, Sie-Jhan Wu
  • Publication number: 20170288092
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1-xN (0<x<1) while the stress control layer is made from AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 5, 2017
    Applicant: Genesis Photonics Inc.
    Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
  • Patent number: 9780255
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device are revealed. The semiconductor light emitting device includes a substrate disposed with a first type doped semiconductor layer and a second type doped semiconductor layer. A light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The second type doped semiconductor layer is doped with a second type dopant at a concentration larger than 5×1019 cm?3 while a thickness of the second type doped semiconductor layer is smaller than 30 nm. Thereby the semiconductor light emitting device provides a better light emitting efficiency.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: October 3, 2017
    Assignee: Genesis Photonics Inc.
    Inventors: Yen-Lin Lai, Jyun-De Wu, Yu-Chu Li
  • Publication number: 20170263814
    Abstract: A semiconductor structure includes a first-type semiconductor layer, a second-type semiconductor layer, a light emitting layer and a hole supply layer. The light emitting layer is disposed between the first-type semiconductor layer and the second-type semiconductor layer. The hole supply layer is disposed between the light emitting layer and the second-type semiconductor layer, and the hole supply layer includes a first hole supply layer and a second hole supply layer. The first hole supply layer is disposed between the light emitting layer and the second hole supply layer, and a chemical formula of the first hole supply layer is Alx1Iny1Ga1-x1-y1N, wherein 0?x1<0.4, and 0?y1<0.4. The second hole supply layer is disposed between the first hole supply layer and the second-type semiconductor layer, a chemical formula of the second hole supply layer is Alx2Iny2Ga1-x2-y2N, wherein 0?x2<0.4, 0?y2<0.4, and x1>x2.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 14, 2017
    Applicant: Genesis Photonics Inc.
    Inventors: Cheng-Hung Lin, Jeng-Jie Huang, Chi-Feng Huang
  • Publication number: 20170256673
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure includes a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. One well layer is disposed between every two barrier layers. The barrier layer is made of AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1) while the well layer is made of InzGa1-zN (0<z<1). Thereby quaternary composition is adjusted for lattice match between the barrier layers and the well layers. Thus crystal defect caused by lattice mismatch is improved.
    Type: Application
    Filed: April 28, 2017
    Publication date: September 7, 2017
    Applicant: Genesis Photonics Inc.
    Inventors: Yen-Lin Lai, Shen-Jie Wang
  • Patent number: 9748209
    Abstract: A light source device including a substrate, a plurality of first light emitting diode (LED) chips, and at least one second LED chip is provided. The substrate has an upper surface. The plurality of first LED chips are disposed on the upper surface and electrically connected to the substrate. Each of the first LED chips includes a first chip substrate, a first semiconductor layer, and a plurality of first electrodes, and the first electrodes are disposed on the upper surface of the substrate. The second LED chip is disposed on the upper surface and electrically connected to the substrate. The second LED chip includes a second chip substrate, a second semiconductor layer, and a plurality of second electrodes. A thickness of the second chip substrate is different from than a thickness of the first chip substrate, and the second electrodes are disposed on the upper surface of the substrate.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: August 29, 2017
    Assignee: Genesis Photonics Inc.
    Inventors: Cheng-Yen Chen, Yun-Li Li, Po-Jen Su
  • Patent number: 9728672
    Abstract: A light-emitting diode (LED) and a method for manufacturing the same are provided. The method includes following steps. An LED wafer is fixed on a crafting table and is processed such that a substrate of the LED wafer has a thickness smaller than or equal to 100 ?m. A fixing piece is pasted on the LED wafer surface. The LED wafer is detached from the crafting table. The LED wafer together with the fixing piece are cut and broken, such that the LED wafer forms a plurality of LEDs. The fixing piece is removed. Before the LED wafer is detached from the crafting table, the fixing piece is pasted on the LED wafer to provide a supporting force to the LED wafer to maintain the flatness of the wafer and avoid the wafer being warped or the substrate being broken or damaged, such that product quality and reliability can be improved.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: August 8, 2017
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Shao-Ying Ting, Jing-En Huang
  • Patent number: 9705045
    Abstract: A light emitting diode (LED) having distributed Bragg reflector (DBR) and a manufacturing method thereof are provided. The distributed Bragg reflector is used as a reflective element for reflecting the light generated by the light emitting layer to an ideal direction of light output. The distributed Bragg reflector has a plurality of through holes, such that the metal layer and the transparent conductive layer disposed on two sides of the distributed Bragg reflector may contact each other to conduct the current. Due to the distribution properties of the through holes, the current may be more uniformly diffused, and the light may be more uniformly emitted from the light emitting layer.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: July 11, 2017
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Yi-Ru Huang, Kuan-Chieh Huang, Chih-Ming Shen, Tung-Lin Chuang, Hung-Chuan Mai, Jing-En Huang, Shao-Ying Ting
  • Patent number: 9685586
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure mainly includes a stress control layer disposed between a light emitting layer and a p-type carrier blocking layer. The p-type carrier blocking layer is made from AlxGa1-xN (0<x<1) while the stress control layer is made from AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1). The light emitting layer has a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. There is one well layer disposed between the two barrier layers. Thereby the stress control layer not only improves crystal quality degradation caused by lattice mismatch between the p-type carrier blocking layer and the light emitting layer but also reduces effects of compressive stress on the well layer caused by material differences.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: June 20, 2017
    Assignee: Genesis Photonics Inc.
    Inventors: Chi-Feng Huang, Ching-Liang Lin, Shen-Jie Wang, Jyun-De Wu, Yu-Chu Li, Chun-Chieh Lee
  • Patent number: 9685596
    Abstract: A package method includes steps of providing a light emitting module, a mold and a molding compound, wherein the light emitting module includes a substrate and at least one light emitting unit disposed on the substrate, the mold has at least one recess, and a side wall of the recess is parallel to a side surface of the light emitting unit; filling the recess with the molding compound; placing the substrate on the mold reversely, so that the light emitting unit is immersed into the recess and the molding compound directly encapsulates the light emitting unit; and heating and pressing the substrate and the mold, so as to solidify the molding compound.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: June 20, 2017
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Chin-Hua Hung, Hao-Chung Lee, Yu-Feng Lin
  • Publication number: 20170159895
    Abstract: A light emitting module including a substrate, a plurality of first light emitting diode (LED) chips and a plurality of second LED chips is provided. The substrate has a cross-shaped central region and a peripheral region surrounding the cross-shaped central region. The first LED chips are disposed on the substrate and at least located in the cross-shaped central region. The second LED chips are disposed on the substrate and at least located in the peripheral region. A size of each second LED chip is smaller than a size of each first LED chip. The number of the first LED chips located in the peripheral region is smaller than that in the cross-shaped central region. The number of the second LED chips located in the cross-shaped central region is smaller than that in the peripheral region.
    Type: Application
    Filed: February 20, 2017
    Publication date: June 8, 2017
    Applicant: Genesis Photonics Inc.
    Inventors: Sheng-Yuan Sun, Po-Jen Su
  • Publication number: 20170148952
    Abstract: A thin-film flip-chip light emitting diode (LED) having a roughened surface and a method for manufacturing the same are provided. First, a substrate having a patterned structure on a surface of the substrate is provided, and the surface is roughened. A first semiconductor layer is then formed on the surface; a light emitting structure layer is then formed on the first semiconductor layer; a second semiconductor layer is then formed on the light emitting structure layer. The first and second semiconductor layers possess opposite electrical characteristics. A first contact electrode and a second contact electrode are then formed on the first semiconductor layer and the second semiconductor layer, respectively. Finally, a sub-mount is formed on the first and second contact electrodes, and the substrate is removed to form the thin-film flip-chip LED having the roughened surface. Here, the light emitting efficiency of the thin-film flip-chip LED is improved.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Fan Li, Jing-En Huang, Sie-Jhan Wu
  • Publication number: 20170125645
    Abstract: A light emitting device includes a light emitting unit, a light transmissive layer and an encapsulant. The light emitting unit includes a substrate, an epitaxial structure layer disposed on the substrate, and a first electrode and a second electrode disposed on the same side of the epitaxial structure layer, respectively. The light emitting unit is disposed on the light transmissive layer and at least a part of the first electrode and a part of the second electrode are exposed by the light transmissive layer. The encapsulant encapsulates the light emitting unit and at least exposes a part of the first electrode and a part of the second electrode. Each of the first electrode and the second electrode extends outward from the epitaxial structure layer, and covers at least a part of an upper surface of the encapsulant, respectively.
    Type: Application
    Filed: January 13, 2017
    Publication date: May 4, 2017
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yu-Feng Lin, Yi-Ru Huang
  • Patent number: 9640716
    Abstract: A multiple quantum well structure includes a plurality of well-barrier sets arranged along a direction. Each of the well-barrier sets includes a barrier layer, at least one intermediate level layer, and a well layer. A bandgap of the barrier layer is greater than an average bandgap of the intermediate level layer, and the average bandgap of the intermediate level layer is greater than a bandgap of the well layer. The barrier layers, the intermediate level layers, and the well layers of the well-barrier sets are stacked by turns. Thicknesses of at least parts of the well layers in the direction gradually decrease along the direction, and thicknesses of at least parts of the intermediate level layers in the direction gradually increase along the direction. A method for manufacturing a multiple quantum well structure is also provided.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: May 2, 2017
    Assignee: Genesis Photonics Inc.
    Inventors: Chi-Feng Huang, Hsin-Chiao Fang, Chi-Hao Cheng
  • Patent number: 9640712
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure includes a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. One well layer is disposed between every two barrier layers. The barrier layer is made of AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1) while the well layer is made of InzGa1-zN (0<z<1). Thereby quaternary composition is adjusted for lattice match between the barrier layers and the well layers. Thus crystal defect caused by lattice mismatch is improved.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: May 2, 2017
    Assignee: Genesis Photonics Inc.
    Inventors: Yen-Lin Lai, Shen-Jie Wang
  • Publication number: 20170084791
    Abstract: The present invention relates to a light emitting diode (LED) and a flip-chip packaged LED device. The present invention provides an LED device. The LED device is flipped on and connected electrically with a packaging substrate and thus forming the flip-chip packaged LED device. The LED device mainly has an Ohmic-contact layer and a planarized buffer layer between a second-type doping layer and a reflection layer. The Ohmic-contact layer improves the Ohmic-contact characteristics between the second-type doping layer and the reflection layer without affecting the light emitting efficiency of the LED device and the flip-chip packaged LED device. The planarized buffer layer id disposed between the Ohmic-contact layer and the reflection layer for smoothening the Ohmic-contact layer and hence enabling the reflection layer to adhere to the planarized buffer layer smoothly.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Applicant: Genesis Photonics Inc.
    Inventors: Yu-Yun Lo, Yi-Ru Huang, Chih-Ling Wu, Tzu-Yang Lin, Yun-Li Li
  • Patent number: D790487
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: June 27, 2017
    Assignee: Genesis Photonics Inc.
    Inventors: Hao-Chung Lee, Yu-Feng Lin, Xun-Xain Zhan
  • Patent number: D796456
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: September 5, 2017
    Assignee: Genesis Photonics Inc.
    Inventors: Hao-Chung Lee, Yu-Feng Lin, Xun-Xain Zhan