Patents Assigned to GENESIS RESEARCH INSTITUTE
  • Patent number: 9109297
    Abstract: A method for producing an accumulated product of a nano-substance that enables the accumulated product of the nano-substance to be produced at low cost, by a simple process that requires few conditions to be controlled and requires minimal energy, and with good reproducibility. Specifically, a method for producing an accumulated product of a nano-substance, the method including crystallizing a protein in a state where the protein and the nano-substance co-exist within a solvent, thereby accumulating the nano-substance within pores of the protein crystals to obtain the accumulated product of the nano-substance.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: August 18, 2015
    Assignees: GENESIS RESEARCH INSTITUTE, INCORPORATED, THE UNIVERSITY OF TOKYO
    Inventors: Yoshihiro Takeda, Fumitaka Mafune, Kazuko Kondow
  • Patent number: 8986510
    Abstract: It is intended to provide a method whereby a target to be analyzed can be easily decomposed in a micro region and a decomposition apparatus. In the decomposition method of decomposing the target to be analyzed and the decomposition apparatus, the target is allowed to coexist with a microparticle and then the microparticle is put into the high-energy state. Then, the target located in the vicinity of the surface of the microparticle is decomposed due to the energy transfer from the high-energy microparticle toward the target. Thus, the target can be easily decomposed in a micro region.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: March 24, 2015
    Assignee: Genesis Research Institute, Inc.
    Inventors: Yoshihiro Takeda, Fumitaka Mafune, Tamotsu Kondou
  • Patent number: 8470724
    Abstract: Upon producing a transparent polycrystalline material, a suspension liquid (or slurry 1) is prepared, the suspension liquid being made by dispersing a raw-material powder in a solution, the raw-material powder including optically anisotropic single-crystalline particles to which a rare-earth element is added. A formed body is obtained from the suspension liquid by means of carrying out slip casting in a space with a magnetic field applied. On this occasion, while doing a temperature control so that the single-crystalline particles demonstrate predetermined magnetic anisotropy, one of static magnetic fields and rotary magnetic fields is selected in compliance with a direction of an axis of easy magnetization in the single-crystalline particles, and is then applied to them. A transparent polycrystalline material is obtained by sintering the formed body, the transparent polycrystalline material having a polycrystalline structure whose crystal orientation is controlled.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: June 25, 2013
    Assignees: Inter-University Research Institute Corporation, National Institutes of Natural Sciences, Genesis Research Institute, Incorporated
    Inventors: Takunori Taira, Jun Akiyama, Shigeo Asai, Kunihiko Hara
  • Publication number: 20120135439
    Abstract: A method for producing an accumulated product of a nano-substance that enables the accumulated product of the nano-substance to be produced at low cost, by a simple process that requires few conditions to be controlled and requires minimal energy, and with good reproducibility. Specifically, a method for producing an accumulated product of a nano-substance, the method including crystallizing a protein in a state where the protein and the nano-substance co-exist within a solvent, thereby accumulating the nano-substance within pores of the protein crystals to obtain the accumulated product of the nano-substance.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 31, 2012
    Applicants: THE UNIVERSITY OF TOKYO, GENESIS RESEARCH INSTITUTE, INCORPORATED
    Inventors: Yoshihiro Takeda, Fumitaka Mafune, Tamotsu Kondow, Kazuko Kondow
  • Publication number: 20110260367
    Abstract: Upon producing a transparent polycrystalline material, a suspension liquid (or slurry 1) is prepared, the suspension liquid being made by dispersing a raw-material powder in a solution, the raw-material powder including optically anisotropic single-crystalline particles to which a rare-earth element is added. A formed body is obtained from the suspension liquid by means of carrying out slip casting in a space with a magnetic field applied. On this occasion, while doing a temperature control so that the single-crystalline particles demonstrate predetermined magnetic anisotropy, one of static magnetic fields and rotary magnetic fields is selected in compliance with a direction of an axis of easy magnetization in the single-crystalline particles, and is then applied to them. A transparent polycrystalline material is obtained by sintering the formed body, the transparent polycrystalline material having a polycrystalline structure whose crystal orientation is controlled.
    Type: Application
    Filed: December 25, 2009
    Publication date: October 27, 2011
    Applicants: Genesis Research Institute, Incorporated, Inter-University Research Institute Corporation
    Inventors: Takunori Taira, Jun Akiyama, Shigeo Asai, Kunihiko Hara
  • Publication number: 20090291367
    Abstract: A lithium secondary battery includes a positive electrode made from a positive electrode active material and a semiconductor substrate that is directly laminated on the positive electrode. A charge carrier formed in the positive electrode active material when the lithium secondary battery is charged and a carrier of the semiconductor substrate are the same, and the semiconductor substrate is used as a collector.
    Type: Application
    Filed: May 15, 2009
    Publication date: November 26, 2009
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Fuminori Mizuno, Noriyuki Sonoyama, Kunihiko Hara
  • Patent number: 7511160
    Abstract: A lactone derivative that is expressed by the following formula (I).
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: March 31, 2009
    Assignees: Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Inc.
    Inventors: Masayuki Kamiya, Kiyohiko Tajima, Eiji Furuya, Hideo Hattori
  • Patent number: 7223568
    Abstract: The present invention relates to a method for determining a nucleotide sequence of a nucleic acid by detecting a single dye molecule.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: May 29, 2007
    Assignees: Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Incorporated
    Inventors: Tamotsu Kondow, Fumitaka Mafune, Yoshihiro Takeda
  • Patent number: 7125631
    Abstract: Disclosed are a lithium salt expressed by a formula, LiAlXn(OY)4-n, where “X” is an electrophilic substituent group and “Y” is an oligoether group, an ionic conductor with the lithium salt dispersed in a structural member, and a liquid electrolyte with the lithium salt dissolved in a solvent. For example, the ionic conductor exhibits high ionic conductivity as well as high lithium ion transport number.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: October 24, 2006
    Assignees: Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Inc.
    Inventor: Tatsuo Fujinami
  • Patent number: 6924067
    Abstract: A polymer electrolyte includes a substrate polymer, a branched polymer, and a lithium salt. The branched polymer has a main chain whose repeating unit is composed of an oligoethylene oxide chain and a connector molecule bonded to the oligoethylene oxide chain. The branched polymer can be a hyperbranched polymer. The polymer electrolyte can further include a composite oxide and/or a boroxine compound. The polymer electrolyte is good in terms of the ionic conductivity, and exhibits a high ionic conductivity especially at low temperatures. When the polymer electrolyte is used to make polymer lithium batteries, the resulting polymer lithium batteries shows improved charge-discharge cycle characteristics. In particular, it is possible to operate the polymer lithium batteries at low temperatures.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: August 2, 2005
    Assignees: Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Inc.
    Inventors: Takahito Ito, Osamu Yamamoto, Tatsuo Fujinami
  • Patent number: 6921820
    Abstract: A method for forming II-type cellulose, which comprises introducing together a slurry having water and a I-type cellulose dispersed therein and water in the state of high temperature and high pressure to a tubular reactor (28) contacting the I-type cellulose with a hot water in a supercritical state or subcritical state for a predetermined time in the tubular reactor (28), to thereby cleave a part of the hydrogen bonds in the I-type cellulose and dissolve the I-type cellulose into the water in a supercritical state or subcritical state, cooling a cellulose solution discharged from the tubular reactor (28) in a cooler (30) to room temperature or lower, followed by allowing to stand, to thereby precipitate crystals of II-type cellulose having a molecular weight lower than that of the I-type cellulose, and separating the resultant II-type cellulose from a solvent. The method allows the preparation of pure II-type cellulose by the use of a simple process.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: July 26, 2005
    Assignees: Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Inc.
    Inventors: Kunio Arai, Tadafumi Ajiri, Hideo Hattori, Mitsuru Sasaki
  • Patent number: 6660889
    Abstract: A Fischer-Tropsch reaction is conducted using a synthesis gas (mixture of carbon monoxide and hydrogen) as a raw material to synthesize hydrocarbons containing a large amount of olefin. These hydrocarbons are separated into a light fraction and a heavy fraction by means of a heat exchanger and an oxo process is conducted with respect to the olefin contained in the light fraction with a cobalt catalyst. As a result, an oxygenated fuel containing alcohol, aldehyde, etc. is manufactured. The oxygenated fuel made by such a manufacturing method is excellent in lubricity and oxidation stability, has a high cetane number, and is also capable of suppressing generation of soot when the oxygenated fuel is combusted.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: December 9, 2003
    Assignees: Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Inc.
    Inventors: Kaoru Fujimoto, Noritatsu Tsubaki
  • Patent number: 6566011
    Abstract: A lithium secondary battery includes a negative electrode active material. The negative electrode active material includes a primary active material and a secondary active material. The primary active material is at least one member selected from the group consisting of carbonaceous materials, Sn, Sn alloys, Sn oxides, Al, Al alloys, Pb, Pb alloys, Si and Si oxides. The secondary active material includes a lithium nitride expressed by a composition formula, Li3−xMxN, in which “M” is at least one element selected from the group consisting of transition metals and “x” is 0<“x”≦0.7. In the lithium secondary battery, the negative electrode retention is relieved efficiently, the capacity is less likely to change suddenly, and the wasting of a positive electrode material is less.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: May 20, 2003
    Assignees: Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Inc.
    Inventors: Yasuo Takeda, Yang Jun
  • Patent number: 6566014
    Abstract: An ionic conductor according to the present invention includes an electrolyte salt for ionic conduction, an ionically conducting molecule including a molecular chain which provides an ion conducting pathway and a boroxine ring bonded to the molecular chain and trapping anions resulting from the electrolyte salt, and a structural member for dispersion and immobilization of the ionically conducting molecule and the electrolyte salt therein. The structural material gives the ionic conductor mechanical strength, the ionically conducting molecule provides an ion conducting pathway, and the electrolyte salt gives it ionic conductivity.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: May 20, 2003
    Assignees: Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Inc.
    Inventors: Tatsuo Fujinami, Mary Anne Mehta
  • Patent number: 6558906
    Abstract: The present invention relates to a method of screening a potential translational regulatory element of mRNA, which promotes or suppresses the translation efficiency of mRNA in a given translation system, by applying the in vitro evolution principles. Specifically, the present invention relates to a method of screening a potential translational regulatory element of mRNA, comprising the steps of synthesizing mRNAs with random oligonucleotide sequences, which are candidates of translational regulatory elements, introduced into the untranslated regions (UTRs), and selecting mRNAs with altered translation efficiency by virtue of the inserted motifs; to translational regulatory elements screened by this method; and to a method of isolating mRNA with altered translation efficiency in comparison with the native mRNA by using such a screening method.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: May 6, 2003
    Assignees: Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Incorporated
    Inventors: Junichi Obokata, Issei Nagao
  • Patent number: 6410814
    Abstract: A process for synthesis of lower isoparaffins from synthesis gas that is a mixture of hydrogen and carbon monoxide, wherein straight chain hydrocarbons are synthesized while isoparaffins and isoolefins are also produced through decomposition of hydrocarbons having a higher carbon number by use of a solid acid catalyst in the first stage, and isoparaffins are synthesized in the second stage. The straight chain hydrocarbons are produced by contacting the synthesis gas with a Fischer-Tropsch synthesis catalyst that is mixed with a solid acid catalyst for mainly hydrocracking long chain hydrocarbons. The isoparaffins are produced by contacting the straight chain hydrocarbons synthesized in the first stage, with a mixture of a hydrogenation catalyst for hydrogenating olefins and a solid acid catalyst for hydrocracking and isomerizing the straight chain hydrocarbons.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: June 25, 2002
    Assignees: Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Inc.
    Inventors: Kaoru Fujimoto, Noritatsu Tsubaki
  • Patent number: 6277524
    Abstract: A lithium-ion-conductive solid electrolyte includes a lithium-ion-conductive substance expressed by a general formula Li2S-GeS2-X wherein “X” is at least one member selected from the group consisting of Ga2S3 and ZnS, or Li2S-SiS2-P2S5. It is superb in terms of stability and safety at elevated temperatures, since it is a crystalline solid of high ion conductivity. It can be applied to a solid electrolyte for lithium batteries.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: August 21, 2001
    Assignees: Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Inc.
    Inventor: Ryoji Kanno