Patents Assigned to Geobiotics, Inc.
  • Publication number: 20050112741
    Abstract: A method of biotreating a solid material to remove an undesired compound using a nonstirred surface bioreactor is provided. According to the method, the surface of a plurality of coarse substrates is coated with a solid material to be biotreated to form a plurality of coated coarse substrates. The coarse substrates have a particle size greater than about 0.3 cm and the solid material to be biotreated has a particle size less than about 250 ?m. A nonstirred surface reactor is then formed by stacking the plurality of coated coarse substrates into a heap or placing the plurality of coated coarse substrates into a tank so that the void volume of the reactor is greater than or equal to about 25%. The solid material is biotreated in the surface bioreactor until the undesired compound in the solid material is degraded to a desired concentration.
    Type: Application
    Filed: October 21, 2004
    Publication date: May 26, 2005
    Applicant: Geobiotics, Inc., a California Corporation
    Inventor: William Kohr
  • Publication number: 20030013166
    Abstract: A method of biotreating a solid material to remove an undesired compound using a nonstirred surface bioreactor is provided. According to the method, the surface of a plurality of coarse substrates is coated with a solid material to be biotreated to form a plurality of coated coarse substrates. The coarse substrates have a particle size greater than about 0.3 cm and the solid material to be biotreated has a particle size less than about 250 &mgr;m. A nonstirred surface reactor is then formed by stacking the plurality of coated coarse substrates into a heap or placing the plurality of coated coarse substrates into a tank so that the void volume of the reactor is greater than or equal to about 25%. The solid material is biotreated in the surface bioreactor until the undesired compound in the solid material is degraded to a desired concentration.
    Type: Application
    Filed: June 20, 2002
    Publication date: January 16, 2003
    Applicant: Geobiotics, Inc., a California Corporation
    Inventor: William J. Kohr
  • Publication number: 20010001065
    Abstract: A method of biotreating a solid material to remove an undesired compound using a nonstirred surface bioreactor is provided. According to the method the surface of a plurality of coarse substrates is coated with a solid material to be biotreated to form a plurality of coated coarse substrates. The coarse substrates have a particle size greater than about 0.3 cm and the solid material to be biotreated has a particle size less than about 250 &mgr;m. A nonstirred surface reactor is then formed by stacking the plurality of coated coarse substrates into a heap or placing the plurality of coated coarse substrates into a tank so that the void volume of the reactor is greater than or equal to about 25%. The reactor is inoculated with a microorganism capable of degrading the undesired compound in the solid material, and the solid material is then biotreated in the surface bioreactor until the undesired compound in the solid material is degraded to a desired concentration.
    Type: Application
    Filed: December 12, 2000
    Publication date: May 10, 2001
    Applicant: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 6159726
    Abstract: A method of biotreating a solid material to remove an undesired compound using a nonstirred surface bioreactor is provided. According to the method the surface of a plurality of coarse substrates is coated with a solid material to be biotreated to form a plurality of coated coarse substrates. The coarse substrates have a particle size greater than about 0.3 cm and the solid material to be biotreated has a particle size less than about 250 .mu.m. A nonstirred surface reactor is then formed by stacking the plurality of coated coarse substrates into a heap or placing the plurality of coated coarse substrates into a tank so that the void volume of the reactor is greater than or equal to about 25%. The reactor is inoculated with a microorganism capable of degrading the undesired compound in the solid material, and the solid material is then biotreated in the surface bioreactor until the undesired compound in the solid material is degraded to a desired concentration.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: December 12, 2000
    Assignee: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 6146444
    Abstract: A method of recovering precious metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from a crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, producing a concentrate of refractory sulfide minerals from the separated fines and adding the concentrate to the heap, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometallurgically treating the bioleached ore to recover precious metal values contained therein.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: November 14, 2000
    Assignee: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 6110253
    Abstract: According to the process, a heap preferably having dimensions of at least 2.5 m high and 5 m wide is constructed with chalcopyrite bearing ore. The constructed heap includes exposed sulfide mineral particles at least 25 weight % of which are chalcopyrite. The concentration of the exposed sulfide mineral particles in the heap is such that the heap includes at least 10 Kg of exposed sulfide sulfur per tonne of solids in the heap. Furthermore, at least 50% of the total copper in the heap is in the form of chalcopyrite. A substantial portion of the heap is then heated to a temperature of at least 50.degree. C. The heap is inoculated, with a culture including at least one strain of thermophilic microorganisms capable of bioleaching sulfide minerals at a temperature above 50.degree. C. A process leach solution that includes sulfuric acid and ferric iron is applied to the heap.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: August 29, 2000
    Assignee: Geobiotics, Inc.
    Inventors: William J. Kohr, Vandy Shrader, Chris Johansson
  • Patent number: 6107065
    Abstract: A method of biooxidizing sulfide minerals in a nonstirred bioreactor is provided. According to the disclosed method, a concentrate of sulfide minerals is coated onto a plurality of substrates, such as coarse ore particles, lava rock, gravel or rock containing a small amount of mineral carbonate as a source of CO.sub.2 for the biooxidizing bacteria. After the sulfide minerals are coated or spread onto the plurality of substrates, a heap is formed with the coated substrates or the coated substrates are placed within a tank. The sulfide minerals on the surface of the plurality of coated substrates are then biooxidized to liberate the metal value of interest. Depending on the particular ore deposit being mined, the sulfide mineral concentrates used in the process may comprise sulfide concentrates from precious metal bearing refractory sulfide ores or they may comprise sulfide concentrates from metal sulfide type ores, such as chalcopyrite, pyrite or sphalorite.
    Type: Grant
    Filed: July 1, 1997
    Date of Patent: August 22, 2000
    Assignee: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 6086656
    Abstract: A method for improving the heap biooxidation rate of refractory sulfide ore particles that are at least partially biooxidized using a recycled bioleachate off solution is provided.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: July 11, 2000
    Assignee: Geobiotics, Inc.
    Inventors: William J. Kohr, Chris Johansson, John Shield, Vandy Shrader
  • Patent number: 6083730
    Abstract: A method of biooxidizing sulfide minerals in a nonstirred bioreactor is provided. According to the disclosed method, a concentrate of sulfide minerals is coated onto a substrate, such as coarse ore particles, lava rock, gravel or rock containing mineral carbonate as a source of CO.sub.2 for the biooxidizing bacteria. After the sulfide minerals are coated onto the substrate, a heap is formed with the coated substrates or the coated substrates are placed within a tank. The sulfide minerals are then biooxidized to liberate the metal value of interest. Depending on the particular ore deposit being mined, the sulfide mineral concentrates used in the process may comprise sulfide concentrates from precious metal bearing refractory sulfide ores or they may comprise sulfide concentrates from metal sulfide type ores, such as chalcopyrite, millerite or sphalorite.
    Type: Grant
    Filed: January 18, 1996
    Date of Patent: July 4, 2000
    Assignee: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 5800593
    Abstract: A method of recovering precious metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from a crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometullurgically treating the bioleached ore to recover the precious metal values. If sufficient quantity of precious metal values are contained in the separated clays and fines, these materials can be further processed to recover the precious metal values contained therein.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: September 1, 1998
    Assignee: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 5792235
    Abstract: A method for recovering precious metals from carbonaceous ore comprising leaching the ore with a lixiviant solution and then preg-robbingly concentrating the precious metal-lixiviant complexes in solution on to the native carbonaceous component of the ore for subsequent recovery. The preg-robbing capacity of the native carbonaceous component of the ore can be augmented by adding recycled carbonaceous matter or finely ground carbon to the ore-lixiviant mixture.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: August 11, 1998
    Assignee: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 5779762
    Abstract: A method for improving the heap biooxidation rate of refractory sulfide ore particles that are at least partially biooxidized using a recycled bioleachate off solution is provided.
    Type: Grant
    Filed: October 25, 1995
    Date of Patent: July 14, 1998
    Assignee: Geobiotics, Inc.
    Inventors: William J. Kohr, Chris Johansson, John Shield, Vandy Shrader
  • Patent number: 5766930
    Abstract: A method of biotreating a solid material to remove an undesired compound using a nonstirred surface bioreactor is provided. According to the method the surface of a plurality of coarse substrates is coated with a solid material to be biotreated to form a plurality of coated coarse substrates. The coarse substrates have a particle size greater than about 0.3 cm and the solid material to be biotreated has a particle size less than about 250 .mu.m. A nonstirred surface reactor is then formed by stacking the plurality of coated coarse substrates into a heap or placing the plurality of coated coarse substrates into a tank so that the void volume of the reactor is greater than or equal to about 25%. The reactor is inoculated with a microorganism capable of degrading the undesired compound in the solid material, and the solid material is then biotreated in the surface bioreactor until the undesired compound in the solid material is degraded to a desired concentration.
    Type: Grant
    Filed: April 22, 1996
    Date of Patent: June 16, 1998
    Assignee: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 5688304
    Abstract: A method for improving the heap biooxidation rate of refractory sulfide ore particles that are at least partially biooxidized using a recycled bioleachate off solution is provided.
    Type: Grant
    Filed: May 24, 1996
    Date of Patent: November 18, 1997
    Assignee: Geobiotics, Inc.
    Inventors: William J. Kohr, Chris Johansson, John Shield, Vandy Shrader
  • Patent number: 5676733
    Abstract: A method of recovering precious metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from a crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, producing a concentrate of refractory sulfide minerals from the separated fines and adding the concentrate to the heap, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometallurgically treating the bioleached ore to recover precious metal values contained therein.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 14, 1997
    Assignee: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 5626647
    Abstract: A method for recovering precious metals from carbonaceous ore comprising leaching the ore with a lixiviant solution and then preg-robbingly concentrating the precious metal-lixiviant complexes in solution on to the native carbonaceous component of the ore for subsequent recovery. The preg-robbing capacity of the native carbonaceous component of the ore can be augmented by adding recycled carbonaceous matter or finely ground carbon to the ore-lixiviant mixture. Furthermore, after the carbonaceous component of the ore is separated from the gangue, the gangue material can be treated in a hot CIL process to further increase the recovery of the precious metal.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 6, 1997
    Assignee: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 5611839
    Abstract: A method of recovering precious metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from a crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometullurgically treating the bioleached ore to recover the precious metal values. If sufficient quantity of precious metal values are contained in the separated clays and fines, these materials can be further processed to recover the precious metal values contained therein.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: March 18, 1997
    Assignee: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 5573575
    Abstract: A method of recovering precious metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from a crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, producing a concentrate of refractory sulfide minerals from the separated fines and adding the concentrate to the heap, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometallurgically treating the bioleached ore to recover precious metal values contained therein.
    Type: Grant
    Filed: November 16, 1994
    Date of Patent: November 12, 1996
    Assignee: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 5431717
    Abstract: A method of recovering precious metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from a crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometullurgically treating the bioleached ore to recover the precious metal values. If sufficient quantity of precious metal values are contained in the separated clays and fines, these materials can be further processed to recover the precious metal values contained therein.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: July 11, 1995
    Assignee: Geobiotics, Inc.
    Inventor: William J. Kohr
  • Patent number: 5378437
    Abstract: A variety of processes for recovering gold from gold ore are disclosed. Briefly, the methods include culturing at least one microorganism species capable of producing cyanide ion under conditions wherein the microorganism produces cyanide ion, thus forming a cyanide ion-containing culture; contacting the cyanide ion-containing culture with gold ore, causing production of gold ion-cyanide ion complexes and biosorption of said complexes to said cultures; and recovering gold from the culture. The invention may be practiced with a variety of microorganisms, including Chromobacterium violaceum and Chlorella vulgaris.
    Type: Grant
    Filed: July 23, 1992
    Date of Patent: January 3, 1995
    Assignee: Geobiotics, Inc.
    Inventors: Dennis G. Kleid, William J. Kohr, Francis R. Thibodeau