Patents Assigned to GeoBiotics LLC
  • Patent number: 8029598
    Abstract: A method for recovering metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, producing a concentrate of refractory sulfide minerals from the separated fines and adding the concentrate to the heap, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometallurgically treating the bioleached ore to recover metal values contained therein.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: October 4, 2011
    Assignee: Geobiotics, LLC
    Inventor: William J. Kohr
  • Patent number: 8030055
    Abstract: A method of biotreating and recovering metal values from metal-bearing refractrory sulfide ore using a nonstirred surface bioreactor is provided. According to the method, the surface of a plurality of coarse substrates is coated with a solid material to be biotreated to form a plurality of coated coarse substrates. The coarse substrates have a particle size greater than about 0.3 cm and the solid material to be biotreated has a particle size less than about 250 ?m. A nonstirred surface reactor is then formed by stacking the plurality of coated coarse substrates into a heap or placing the plurality of coated coarse substrates into a tank so that the void volume of the reactor is greater than or equal to about 25%. The solid material is biotreated in the surface bioreactor until the undesired compound in the solid material is degraded to a desired concentration.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: October 4, 2011
    Assignee: Geobiotics, LLC
    Inventor: William J. Kohr
  • Patent number: 8021870
    Abstract: A method of biotreating a solid material including an organic compound is provided. According to the method, a nonstirred bioreactor having a void volume of greater than or equal to 25% with a mixture including a solid material to be biotreated and a plurality of coarse substrates having a particle size greater than or equal to about 0.6 cm is formed. The solid material to be biotreated includes an organic material. The mixture includes sufficient coarse substrates to provide the reactor with at least 100 square meters of surface area per cubic meter of reactor space. The solid material in the bioreactor is biotreated until the organic material within the bioreactor is reduced to a desired concentration.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: September 20, 2011
    Assignee: Geobiotics, LLC
    Inventor: William J. Kohr
  • Patent number: 8012238
    Abstract: A heap is constructed with hypogenic copper sulfide bearing ore to include exposed sulfide mineral particles at least 25 weight % of which are hypogenic copper sulfides. The concentration of the exposed sulfide mineral particles is such that the heap includes at least 10 Kg of exposed sulfide sulfur per tonne of solids in the heap. At least 50% of the total copper in the heap is in the form of hypogenic copper sulfides. A substantial portion of the heap is heated to at least 50° C. The heap is inoculated with a thermophilic microorganism, and bioleaching is carried out so that sufficient sulfide mineral particles in the heap are biooxidized to oxidize at least 10 Kg of sulfide sulfur per tonne of solids in the heap and to cause the dissolution of at least 50% of the copper in the heap in a relatively short period of time.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: September 6, 2011
    Assignee: Geobiotics, LLC
    Inventors: William J. Kohr, Vandy Shrader, Chris Johansson
  • Publication number: 20100199808
    Abstract: A method for recovering metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, producing a concentrate of refractory sulfide minerals from the separated fines and adding the concentrate to the heap, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometallurgically treating the bioleached ore to recover metal values contained therein.
    Type: Application
    Filed: December 31, 2009
    Publication date: August 12, 2010
    Applicant: GeoBiotics, LLC
    Inventor: William J. KOHR
  • Publication number: 20100126314
    Abstract: A heap is constructed with hypogenic copper sulfide bearing ore to include exposed sulfide mineral particles at least 25 weight % of which are hypogenic copper sulfides. The concentration of the exposed sulfide mineral particles is such that the heap includes at least 10 Kg of exposed sulfide sulfur per tonne of solids in the heap. At least 50% of the total copper in the heap is in the form of hypogenic copper sulfides. A substantial portion of the heap is heated to at least 50° C. The heap is inoculated with a thermophilic microorganism, and bioleaching is carried out so that sufficient sulfide mineral particles in the heap are biooxidized to oxidize at least 10 Kg of sulfide sulfur per tonne of solids in the heap and to cause the dissolution of at least 50% of the copper in the heap in a relatively short period of time.
    Type: Application
    Filed: January 26, 2010
    Publication date: May 27, 2010
    Applicant: GEOBIOTICS, LLC
    Inventors: William J. Kohr, Vandy Shrader, Chris Johansson
  • Patent number: 7658783
    Abstract: A heap is constructed with hypogenic copper sulfide bearing ore to include exposed sulfide mineral particles at least 25 weight % of which are hypogenic copper sulfides. The concentration of the exposed sulfide mineral particles is such that the heap includes at least 10 Kg of exposed sulfide sulfur per tonne of solids in the heap. At least 50% of the total copper in the heap is in the form of hypogenic copper sulfides. A substantial portion of the heap is heated to at least 50° C. The heap is inoculated with a thermophilic microorganism, and bioleaching is carried out so that sufficient sulfide mineral particles in the heap are biooxidized to oxidize at least 10 Kg of sulfide sulfur per tonne of solids in the heap and to cause the dissolution of at least 50% of the copper in the heap in a relatively short period of time.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: February 9, 2010
    Assignee: GeoBiotics, LLC
    Inventors: William J. Kohr, Vandy Shrader, Chris Johansson
  • Publication number: 20090235784
    Abstract: The invention relates to a process for the pre-treatment of feed to a non-stirred surface heap leach bioreactor by applying in sequence first and second pre-treatment solutions to a feed to a non-stirred surface heap leach bioreactor, in which the first solution has an iron content greater than 5 g/l and pH below 2, and the second solution contains a substantially higher microbial population. The invention further relates to methods of adapting a microbial population for use in a non-stirred surface heap leach bioreactor.
    Type: Application
    Filed: September 14, 2007
    Publication date: September 24, 2009
    Applicant: Geobiotics LLC
    Inventor: Alan Eric Norton
  • Patent number: 7575622
    Abstract: The invention discloses a method of controlling a heap leach process through controlling an irrigation rate of a heap as a function of at least one of an aeration rate of the heap, a determination of advection at least at one predetermined point in the heap, and a determination of temperature at least at one predetermined point in the heap. Also disclosed is for the aeration to be forced and for the method to include the step of controlling the aeration rate as 10 a function of a determination of the oxidation rate of material within the heap. The invention also extends to a method for the introduction of microorganisms into the heap of material, a method for increasing the temperature of heap of material for heap leaching, a method of determining an optimum heap configuration for a bio-assisted heap leach process of an ore heap, and a method of enriching the environment of microorganisms embedded in a heap of material for bio-assisted heap leaching.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: August 18, 2009
    Assignee: Geobiotics LLC
    Inventors: Frank K. Crundwell, Alan E. Norton
  • Patent number: 7455716
    Abstract: A heap is constructed with hypogenic copper sulfide bearing ore to include exposed sulfide mineral particles at least 25 weight % of which are hypogenic copper sulfides. The concentration of the exposed sulfide mineral particles is such that the heap includes at least 10 Kg of exposed sulfide sulfur per tonne of solids in the heap. At least 50% of the total copper in the heap is in the form of hypogenic copper sulfides. A substantial portion of the heap is heated to at least 50° C. The heap is inoculated with a thermophilic microorganism, and bioleaching is carried out so that sufficient sulfide mineral particles in the heap are biooxidized to oxidize at least 10 Kg of sulfide sulfur per tonne of solids in the heap and to cause the dissolution of at least 50% of the copper in the heap in a relatively short period of time.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: November 25, 2008
    Assignee: Geobiotics, LLC
    Inventors: William J. Kohr, Vandy Shrader, Chris Johansson
  • Patent number: 7429286
    Abstract: A method of recovering precious metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from a crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, producing a concentrate of refractory sulfide minerals from the separated fines and adding the concentrate to the heap, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometallurgically treating the bioleached ore to recover precious metal values contained therein.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: September 30, 2008
    Assignee: Geobiotics, LLC
    Inventor: William J. Kohr
  • Patent number: 7416882
    Abstract: A method of biotreating a solid material to remove an undesired compound using a nonstirred surface bioreactor is provided. According to the method, the surface of a plurality of coarse substrates is coated with a solid material to be biotreated to form a plurality of coated coarse substrates. The coarse substrates have a particle size greater than about 0.3 cm and the solid material to be biotreated has a particle size less than about 250 ?m. A nonstirred surface reactor is then formed by stacking the plurality of coated coarse substrates into a heap or placing the plurality of coated coarse substrates into a tank so that the void volume of the reactor is greater than or equal to about 25%. The solid material is biotreated in the surface bioreactor until the undesired compound in the solid material is degraded to a desired concentration.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: August 26, 2008
    Assignee: Geobiotics, LLC
    Inventor: William J. Kohr
  • Patent number: 7160354
    Abstract: A heap is constructed with hypogenic copper sulfide bearing ore to include exposed sulfide mineral particles at least 25 weight % of which are hypogenic copper sulfides. The concentration of the exposed sulfide mineral particles is such that the heap includes at least 10 Kg of exposed sulfide sulfur per tonne of solids in the heap. At least 50% of the total copper in the heap is in the form of hypogenic copper sulfides. A substantial portion of the heap is heated to at least 50° C. The heap is inoculated with a thermophilic microorganism, and bioleaching is carried out so that sufficient sulfide mineral particles in the heap are biooxidized to oxidize at least 10 Kg of sulfide sulfur per tonne of solids in the heap and to cause the dissolution of at least 50% of the copper in the heap in a relatively short period of time.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: January 9, 2007
    Assignee: Geobiotics, LLC
    Inventors: William J. Kohr, Vandy Shrader, Chris Johansson
  • Patent number: 7156894
    Abstract: A method of recovering precious metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from a crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, producing a concentrate of refractory sulfide minerals from the separated fines and adding the concentrate to the heap, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometallurgically treating the bioleached ore to recover precious metal values contained therein.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: January 2, 2007
    Assignee: Geobiotics, LLC
    Inventor: William J. Kohr
  • Publication number: 20050103162
    Abstract: A heap is constructed with hypogenic copper sulfide bearing ore to include exposed sulfide mineral particles at least 25 weight % of which are hypogenic copper sulfides. The concentration of the exposed sulfide mineral particles is such that the heap includes at least 10 Kg of exposed sulfide sulfur per tonne of solids in the heap. At least 50% of the total copper in the heap is in the form of hypogenic copper sulfides. A substantial portion of the heap is heated to at least 50° C. The heap is inoculated with a thermophilic microorganism, and bioleaching is carried out so that sufficient sulfide mineral particles in the heap are biooxidized to oxidize at least 10 Kg of sulfide sulfur per tonne of solids in the heap and to cause the dissolution of at least 50% of the copper in the heap in a relatively short period of time.
    Type: Application
    Filed: October 12, 2004
    Publication date: May 19, 2005
    Applicant: GeoBiotics, LLC
    Inventors: William Kohr, Vandy Shrader, Chris Johansson
  • Patent number: 6855527
    Abstract: A method of biotreating a solid material to remove an undesired compound using a nonstirred surface bioreactor is provided. According to the method, the surface of a plurality of coarse substrates is coated with a solid material to be biotreated to form a plurality of coated coarse substrates. The coarse substrates have a particle size greater than about 0.3 cm and the solid material to be biotreated has a particle size less than about 250 ?m. A nonstirred surface reactor is then formed by stacking the plurality of coated coarse substrates into a heap or placing the plurality of coated coarse substrates into a tank so that the void volume of the reactor is greater than or equal to about 25%. The solid material is biotreated in the surface bioreactor until the undesired compound in the solid material is degraded to a desired concentration.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: February 15, 2005
    Assignee: GeoBiotics LLC
    Inventor: William J. Kohr
  • Patent number: 6802888
    Abstract: According to the process, a heap preferably having dimensions of at least 2.5 m high and 5 m wide is constructed with hypogenic copper sulfide bearing ore. The constructed heap includes exposed sulfide mineral particles at least 25 weight % of which are hypogenic copper sulfides. The concentration of the exposed sulfide mineral particles in the heap is such that the heap includes at least 10 Kg of exposed sulfide sulfur per tonne of solids in the heap. Furthermore, at least 50% of the total copper in the heap is in the form of hypogenic copper sulfides. A substantial portion of the heap is then heated to a temperature of at least 50° C. The heap is inoculated with a culture including at least one strain of thermophilic microorganisms capable of bioleaching sulfide minerals at a temperature above 50° C. A process leach solution that includes sulfuric acid and ferric iron is applied to the heap.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: October 12, 2004
    Assignee: GeoBiotics, LLC
    Inventors: William J. Kohr, Vandy Shrader, Chris Johansson
  • Patent number: 6652622
    Abstract: A method of recovering precious metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from a crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, producing a concentrate of refractory sulfide minerals from the separated fines and adding the concentrate to the heap, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometallurgically treating the bioleached ore to recover precious metal values contained therein.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: November 25, 2003
    Assignee: Geobiotics, LLC.
    Inventor: William J. Kohr
  • Publication number: 20020194962
    Abstract: According to the process, a heap preferably having dimensions of at least 2.5 m high and 5 m wide is constructed with hypogenic copper sulfide bearing ore. The constructed heap includes exposed sulfide mineral particles at least 25 weight % of which are hypogenic copper sulfides. The concentration of the exposed sulfide mineral particles in the heap is such that the heap includes at least 10 Kg of exposed sulfide sulfur per tonne of solids in the heap. Furthermore, at least 50% of the total copper in the heap is in the form of hypogenic copper sulfides. A substantial portion of the heap is then heated to a temperature of at least 50° C. The heap is inoculated with a culture including at least one strain of thermophilic microorganisms capable of bioleaching sulfide minerals at a temperature above 50° C. A process leach solution that includes sulfuric acid and ferric iron is applied to the heap.
    Type: Application
    Filed: February 28, 2002
    Publication date: December 26, 2002
    Applicant: GEOBIOTICS, LLC
    Inventors: William J. Kohr, Vandy Shrader, Chris Johansson
  • Publication number: 20020194963
    Abstract: A method of recovering precious metal values from refractory sulfide ores is provided. The method includes the steps of separating clays and fines from a crushed refractory sulfide ore, forming a heap from the refractory sulfide ore, producing a concentrate of refractory sulfide minerals from the separated fines and adding the concentrate to the heap, bioleaching the heap to thereby oxidize iron sulfides contained therein, and hydrometallurgically treating the bioleached ore to recover precious metalvalues contained therein.
    Type: Application
    Filed: May 14, 2002
    Publication date: December 26, 2002
    Applicant: GeoBiotics, LLC.
    Inventor: William J. Kohr