Abstract: A design-timing-determination process for an electronic design automation system approximates the timing of a whole design quickly and on-the-fly. Such allows a scheduling system to construct operation schedules that are ultimately realizable. A timing analysis is applied each time an individual operation is scheduled, and may be called many times to get a single operation scheduled. A graph representing combinational logic is partitioned into a collection of logic trees with nodes that represent gates and terminals, and arcs that represent connections. A compacted model of each logic tree is constructed by replacing them with equivalent trees having no interior nodes. The timing of the original circuit is analyzed along each path from the leaves to the roots. A propagation delay for each path is determined, and such is annotated onto each corresponding arc of the simplified tree.
Abstract: A delay-optimizing technology-mapping process for an electronic design automation system selects the best combination of library devices to use in a forward and a backward sweep of circuit trees representing a design. A technology selection process in an electronic design automation-system comprises the steps of partitioning an original circuit design into a set of corresponding logic trees. Then, ordering the set of corresponding logic trees into an ordered linear list such that each tree-T that drives another ordered tree precedes the other ordered tree, and such that each ordered tree that drives the tree-T precedes the tree-T. Next, sweeping forward in the ordered linear list while computing a set of Pareto-optimal load/arrival curves for each of a plurality of net nodes that match a technology-library element.