Patents Assigned to Giner, Inc.
-
Patent number: 12255338Abstract: Atomically dispersed platinum-group metal-free catalyst and method for synthesizing the same. According to one embodiment, the catalyst is made by a method in which, in a first step, an Mn-doped ZIF-8 catalyst precursor is prepared by reacting a first solution comprising zinc nitrate hexahydrate and manganese chloride dissolved in an acid/water solution with a second solution comprising 2-methylimidazole dissolved in water. Then, in a second step, the Mn-doped ZIF-8 catalyst precursor is thermally activated, i.e., carbonized, to form an Mn—N—C catalyst. Preferably, the thermal activation is performed in a multistep fashion, first at a lower temperature of about 800° C. and then at a higher temperature of about 1100° C. After carbonization, the catalyst material may optionally be subjected to an absorption process, followed by a second thermal activation. The absorption process may involve dispersing the catalyst material in a solution of manganese chloride and urea in hydrochloric acid and isopropanol.Type: GrantFiled: September 1, 2021Date of Patent: March 18, 2025Assignees: The Research Foundation for the State University of New York, Giner, Inc.Inventors: Gang Wu, Hui Xu, Mengjie Chen, Fan Yang
-
Patent number: 12173416Abstract: A composite membrane that is suitable for use in a molten alkaline water electrolyzer. In one embodiment, the composite membrane includes a porous support, the porous support being in the form of a matrix of metal oxide particles randomly arranged to form a plurality of tortuous pores. The composite membrane also includes molten electrolyte filling the pores of the porous support, the molten electrolyte having hydroxide ion conductivity. The molten electrolyte may be a single species of an alkali hydroxide or of an alkaline earth hydroxide. Alternatively, the molten electrolyte may be a eutectic or non-eutectic mixture of two or more species of alkali hydroxides or alkaline earth hydroxides. The composite membrane may further include one or more additives, such as a coarsening inhibitor, a crack attenuator, and a reinforcing material. The composite material may be used to make a molten alkaline membrane water electrolyzer with high electrical efficiencies.Type: GrantFiled: October 1, 2019Date of Patent: December 24, 2024Assignee: GINER, INC.Inventors: Hui Xu, Andrew Sweet, Winfield Greene, Kailash Patil
-
Patent number: 12090300Abstract: Method and system for controlling oxygen delivery to a cell implant. In one embodiment, the system includes a water electrolyzer, a cell capsule, a gas conduit, a total fluid pressure sensor, and a controller. The water electrolyzer generates gaseous oxygen with a variable output. The cell capsule includes a cell chamber adapted to hold cells. The gas conduit interconnects the water electrolyzer and the cell capsule to deliver gaseous oxygen generated by the water electrolyzer to the cell capsule. The total fluid pressure sensor is positioned at a location that provides a representative reading of the total fluid pressure within the cell chamber. The controller is electrically coupled both to the total fluid pressure sensor and to the water electrolyzer so that the controller may control the variable output of the water electrolyzer based on one or more sensed total pressure readings from the total fluid pressure sensor.Type: GrantFiled: May 14, 2019Date of Patent: September 17, 2024Assignee: GINER, INC.Inventor: Simon G. Stone
-
Patent number: 12070383Abstract: System for gas treatment of cellular implants. The system enhances the viability and function of cellular implants, particularly those with high cellular density, for use in human or veterinary medicine. The system utilizes a miniaturized electrochemical gas generator subsystem that continuously supplies oxygen and/or hydrogen to cells within an implantable and immunoisolated cell containment subsystem to facilitate cell viability and function at high cellular density while minimizing overall implant size. The cell containment subsystem is equipped with features to allow gas delivery through porous tubing or gas-only permeable internal gas compartments within the implantable cell containment subsystem. Furthermore, the gas generator subsystem includes components that allow access to water for electrolysis while implanted, thereby promoting long-term implantability of the gas generator subsystem.Type: GrantFiled: July 17, 2023Date of Patent: August 27, 2024Assignee: GINER, INC.Inventors: Linda Tempelman, Simon Stone, Klearchos Papas
-
Patent number: 11978912Abstract: Atomically dispersed platinum-group metal-free catalyst and method for synthesizing the same. According to one embodiment, the catalyst is made by a method in which, in a first step, a metal oxide/zeolitic imidazolate frameworks (ZIF) composite is formed by combining (i) nanoparticles of an oxide of at least one of iron, cobalt, nickel, manganese, and copper, (ii) a hydrated zinc salt, and (iii) an imidazole. Then, in a second step, the metal oxide/ZIF composite is thermally activated, i.e., carbonized, to form an M-N—C catalyst. Thereafter, the M-N—C catalyst may be mixed with a quantity of ammonium chloride, and then the M-N—C/NH4Cl mixture may be pyrolyzed. The foregoing NH4Cl treatment may improve the intrinsic activity of the catalyst. Then, a thin layer of nitrogen-doped carbon may be added to NH4Cl-treated M-N—C catalyst by chemical vapor deposition (CVD). Such CVD treatment may improve the stability of the catalyst.Type: GrantFiled: November 19, 2021Date of Patent: May 7, 2024Assignees: The Research Foundation for the State University of New York, Giner, Inc.Inventors: Gang Wu, Hui Xu, Shengwen Liu, Shuo Ding
-
Patent number: 11965074Abstract: Anion exchange membrane and methods of making and using the same. In one embodiment, the anion exchange membrane may be made by a method that includes a two-step polymerization. In the first step, an ?-olefin monomer containing a pendant halide, such as 8-bromo-1-octene, may be polymerized by Ziegler-Natta polymerization to form a first polymer portion, the first polymer portion being a homopolymer. In the second step, the polymerization is charged with a non-functionalized ?-olefin monomer, such as ethylene, thereby forming a second polymer portion, the second polymer being a copolymer made up predominantly of the non-functionalized olefin monomer. If desired, a small amount of an ?-olefin monomer containing a crosslinking functionality may be included in the first and/or second steps. Following the two-step polymerization, the polymer is fabricated into a thin film. Thereafter, the thin film may be functionalized by replacing the pendant halides with pendant cations.Type: GrantFiled: June 9, 2022Date of Patent: April 23, 2024Assignee: GINER, INC.Inventors: Derek J. Strasser, Hui Xu, Judith Lattimer
-
Patent number: 11773496Abstract: Electrolytic gas generator and multi-functional current collector for use in same. In one embodiment, the current collector is constructed both to conduct current from an electrode to a conductive lead and to conduct gas generated at the electrode to external tubing. Accordingly, the current collector may be formed by bonding together a top metal plate and a bottom metal plate of similar profiles, each of which may be shaped to include a main portion and a lateral extension. The bottom metal plate may have central through hole in the main portion for receiving gas from the anode. The top metal plate may have a recess on its bottom surface. The recess may have a first end aligned with the through hole on the bottom metal plate and may have a second end at the end of the lateral extension. A lead and tubing may be attached to the lateral extension.Type: GrantFiled: May 17, 2019Date of Patent: October 3, 2023Assignee: GINER, INC.Inventors: Melissa N. Schwenk, Simon G. Stone
-
Patent number: 11723553Abstract: Method and system for detecting and/or quantifying ?9-tetrahydrocannibinol (THC) in exhaled breath. In one embodiment, the method involves providing an electrochemical sensing element, the electrochemical sensing element including a working electrode, and also providing a filter that traps THC in exhaled breath. Next, a subject exhales onto the filter, whereby at least some of the THC, if present, is trapped in the filter. Next, the filter is washed with an eluent, whereby at least some of the THC trapped in the filter is eluted in an eluate. Next, the eluate is deposited onto the working electrode of the electrochemical sensing element, and the eluate is dried, whereby any THC present is immobilized on the working electrode. Next, an electrolytic solution is delivered to the electrochemical sensing element, and the THC immobilized on the working electrode is directly electrochemically detected and/or quantified using a pulse voltammetry technique, such as square-wave voltammetry.Type: GrantFiled: February 11, 2020Date of Patent: August 15, 2023Assignee: GINER, INC.Inventors: Badawi M. Dweik, Avni A. Argun, Anahita Karimi
-
Patent number: 11701215Abstract: System for gas treatment of cellular implants. The system enhances the viability and function of cellular implants, particularly those with high cellular density, for use in human or veterinary medicine. The system utilizes a miniaturized electrochemical gas generator subsystem that continuously supplies oxygen and/or hydrogen to cells within an implantable and immunoisolated cell containment subsystem to facilitate cell viability and function at high cellular density while minimizing overall implant size. The cell containment subsystem is equipped with features to allow gas delivery through porous tubing or gas-only permeable internal gas compartments within the implantable cell containment subsystem. Furthermore, the gas generator subsystem includes components that allow access to water for electrolysis while implanted, thereby promoting long-term implantability of the gas generator subsystem.Type: GrantFiled: February 4, 2019Date of Patent: July 18, 2023Assignee: GINER, INC.Inventors: Linda Tempelman, Simon Stone, Klearchos Papas
-
Patent number: 11642501Abstract: Implantable gas delivery device and methods, systems, and devices including same. According to one embodiment, the implantable gas delivery device includes a porous core that permits facile transport of gas throughout its open volume. The porous core has sufficiently high tensile strength to withstand pressurization without significant deformation. The porous core is generally planar and is shaped to include a pair of opposing surfaces and a periphery. Diffusion membranes are fixed to the two opposing surfaces of the porous core. A gas supply tube has one end inserted into the porous core and another end connectable to a gas source. The periphery of the porous core is sealed gas-tight, either with a gasket or by sealing the porous core and/or diffusion membranes. The device may be used to deliver a gas to an implanted cell capsule or to native cells or tissues or may be used to expel waste gas.Type: GrantFiled: May 4, 2018Date of Patent: May 9, 2023Assignee: GINER, INC.Inventors: Anthony A. Ferrante, Simon G. Stone
-
Patent number: 11092585Abstract: Method and system for detection and quantification of oxidizable organics in water. The method involves the partial electrolytic decomposition of the oxidizable organics in a short time frame, preferably less than five seconds, and does not involve the use of toxic reagents. The system includes an electrochemical sensor probe that, in turn, includes a boron-doped diamond microelectrode array. The system additionally includes an electronic transducer and a computing device. The system utilizes an analysis technique to convert sensor signal to a result that can be correlated with COD or BOD values obtained by standard methods. The method and system are particularly suitable for, but not limited to, use in monitoring of water quality at wastewater treatment plants. By employing the method before and after adding aerobic microorganisms to the sample, the method may be used to distinguish biologically oxidizable organics from total oxidizable organics.Type: GrantFiled: February 27, 2019Date of Patent: August 17, 2021Assignee: GINER, INC.Inventors: Badawi M. Dweik, Avni A. Argun, Katherine E. Harrison
-
Patent number: 11024876Abstract: A composite membrane that is suitable for use in an electrochemical cell, an electrochemical cell including the composite membrane, and a method of making the composite membrane. In one embodiment, the composite membrane includes a porous support and a solid electrolyte. The porous support is a unitary structure made of a polymer that is non-conductive to ions. The porous support is shaped to include a plurality of straight-through pores. The solid electrolyte has alkali ion conductivity and preferably completely fills at least some of the pores of the porous support. A variety of techniques may be used to load the solid electrolyte into the pores. According to one technique, the solid electrolyte is melted and then poured into the pores of the porous support. Upon cooling, the electrolyte re-solidifies, forming a monolithic structure within the pores of the porous support.Type: GrantFiled: November 1, 2017Date of Patent: June 1, 2021Assignee: GINER, INC.Inventors: Hui Xu, Jarrod D. Milshtein, Katherine Harrison, Mario Moreira, Brian Rasimick
-
Patent number: 10128496Abstract: A three-dimensional, porous anode material suitable for use in a lithium-ion cell. The three-dimensional, porous anode material includes active anode particles embedded within a carbon matrix. The porous structure of this novel anode material allows for the expansion and contraction of the anode without the anode delaminating or breaking apart, thus improving the life-cycle of the lithium-ion cell. An example of this three-dimensional porous anode material is a porous silicon-carbon composite formed using a bi-continuous micro-emulsion (BME) template.Type: GrantFiled: August 14, 2015Date of Patent: November 13, 2018Assignee: GINER, INC.Inventors: Castro Laicer, Brian Rasimick, Kate Harrison, Robert McDonald
-
Patent number: 10091985Abstract: Method and system for organ preservation. According to one aspect, an organ may be preserved by being perfused with an in situ generated preserving gas. The organ may be, for example, a human or porcine pancreas, and perfusion of the pancreas may be anterograde, retrograde, ductal, anterograde/ductal, or retrograde/ductal. The preserving gas used to perfuse the organ may be dissolved in a liquid and then administered to the organ as a gas/liquid solution or may be mixed with one or more other gases and then administered to the organ as a gas/gas mixture. The preserving gas may be, for example, oxygen gas generated in situ using an electrochemical oxygen concentrator. According to another aspect, an organ preservation system may include an electrochemical oxygen concentrator having a water vapor feed, as well as auxiliary equipment to control and measure delivery pressure, flow, temperature and humidity.Type: GrantFiled: June 18, 2010Date of Patent: October 9, 2018Assignee: GINER, INC.Inventors: Linda A. Tempelman, Klearchos K. Papas, Simon G. Stone, William Earl Scott, III, Thomas M. Suszynski, Shuichiro Matsumoto, Joana Ferrer Fabrega, Michael D. Rizzari
-
Patent number: 9728802Abstract: In polymer electrolyte membrane (PEM) fuel cells and electrolyzes, attaining and maintaining high membrane conductivity and durability is crucial for performance and efficiency. The use of low equivalent weight (EW) perfluorinated ionomers is one of the few options available to improve membrane conductivity. However, excessive dimensional changes of low EW ionomers upon application of wet/dry or freeze/thaw cycles yield catastrophic losses in membrane integrity. Incorporation of ionomers within porous, dimensionally-stable perforated polymer electrolyte membrane substrates provides improved PEM performance and longevity. The present invention provides novel methods using micromolds to fabricate the perforated polymer electrolyte membrane substrates. These novel methods using micromolds create uniform and well-defined pore structures. In addition, these novel methods using micromolds described herein may be used in batch or continuous processing.Type: GrantFiled: May 14, 2014Date of Patent: August 8, 2017Assignee: GINER, INC.Inventors: Cortney Mittelsteadt, Avni Argun, Castro Laicer, Jason Willey
-
Patent number: 9595727Abstract: An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires.Type: GrantFiled: November 16, 2011Date of Patent: March 14, 2017Assignee: GINER, INC.Inventors: Cortney K. Mittelsteadt, Castro S. T. Laicer, Katherine E. Harrison, Bryn M. McPheeters
-
Patent number: 9537169Abstract: An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.Type: GrantFiled: August 23, 2013Date of Patent: January 3, 2017Assignee: GINER, INC.Inventors: Cortney K. Mittelsteadt, William A. Braff
-
Patent number: 9357764Abstract: System for fluid perfusion of biological matter that includes tissue. According to one embodiment, the system may include a storage container for storing the biological matter, a thermal control device for cooling the contents of the storage container, a gas generator for generating a preserving gas, a fluid conduit coupled to the gas generator and insertable into tissue for delivering the preserving gas to the biological matter, and a process controller for controlling the operation of the gas generator and the thermal control device. The gas generator, in turn, may include an electrochemical oxygen concentrator and/or a water electrolyzer for generating the preserving gas. The system may further include a liquid perfusion system that includes a reservoir of liquid perfusate, a fluid delivery conduit for delivering liquid perfusate from the reservoir to the biological matter, and a fluid draining conduit for draining liquid perfusate from the biological matter.Type: GrantFiled: December 30, 2011Date of Patent: June 7, 2016Assignee: GINER, INC.Inventors: Linda A. Tempelman, Simon G. Stone
-
Patent number: 8962132Abstract: A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.Type: GrantFiled: October 4, 2010Date of Patent: February 24, 2015Assignee: Giner, Inc.Inventors: Han Liu, Cortney K. Mittelsteadt, Timothy J. Norman, Arthur E. Griffith, Anthony B. LaConti
-
Patent number: 8758946Abstract: Electrolyte suitable for use in a lithium ion cell or battery. According to one embodiment, the electrolyte includes a fluorinated lithium ion salt and a solvent system that solvates lithium ions and that yields a high dielectric constant, a low viscosity and a high flashpoint. In one embodiment, the solvent system includes a mixture of an aprotic lithium ion solvating solvent and an aprotic fluorinated solvent.Type: GrantFiled: October 4, 2007Date of Patent: June 24, 2014Assignee: Giner, Inc.Inventor: Robert C. McDonald