Abstract: A drive aft has two universal joints. The universal joint (1) is connected to a sliding sleeve (9). The other universal joint carries a sliding journal (8). The sliding journal (8) and the sliding sleeve (9) engage one another in a rotationally fast way via teeth (11, 22). The teeth (11, 22) are longitudinally displaceable relative to one another in the direction of a longitudinal axis (10). In order to prevent the driveshaft, in the fitted condition, from falling apart after having suffered a fracture, an anti-disengagement member is provided. The member includes an annular stop (13) arranged at the end of the sliding journal (8). The stop (13) may be fitted through an aperture (15) in the joint yoke (4) of the first universal joint (1). The stop (13) stops against a suitable face of the inner longitudinal teeth (22) when the sliding sleeve (9) and the sliding journal (8) are moved apart by a change in length distance (16).
Abstract: A bipode joint for small articulation angles and high torque transmission has a first joint part (1) and a second joint part (23). Two rollers (7, 8) are rotatably supported on arms (3) of the first joint part (1). The rollers (7, 8) engage apertures (27) which extend from a cavity (24) to the outer face of the second joint part (23). To assemble the first joint part (1) with arms (3), recesses (32) are provided which enable the first joint part (1) to be threaded in. Thus, it is possible to associate the running faces which cooperate with the rollers (7, 8) with the apertures in the second joint part, thus, overall achieving a stable embodiment for high torque transmission.
Abstract: A bipode joint has a first joint part (1) with a first longitudinal axis (2) and a second joint part (23) with a second longitudinal axis (27). The first joint part (1) has an arm (3) whose diameter is stepped and includes a roller (7') whose face also includes a stepped diameter. The faces are an outer face (9) with a smaller diameter and, on the radial inside, a transmitting face (11) with a larger diameter. A spherical zone is arranged between the two faces. Two running faces (30) are on the second joint part (23) to guide the outer face (9). In the radially inward direction, the running face (30) is followed by a supporting face (32). The supporting face (32) is a partial cylindrical face to support the roller (7') with its spherical zone (10). Further inwardly, towards the second longitudinal axis (27), a supplementary running face (34) follows the support face (32). The supplementary running face serves as a supporting face for the transmitting face (11) of the roller (7').