Patents Assigned to GL Sciences Incorporated
  • Patent number: 9347919
    Abstract: The present invention provides a method and apparatus for rapidly extracting the analyte existing in the liquid phase in analyzing an analyte “having a large partition coefficient in gas-liquid equilibrium”, “having a high water solubility”, or “having a low olfactory threshold” by a gas-liquid contact extraction method, and further provides, a method and apparatus for unmanned continuous sample introduction of the analyte to a GC or the like for a long time. In the present invention, using a gas-liquid contact extractor to which a sample liquid is continuously introduced from above and a purge gas from beneath, the analyte in the sample liquid is extracted by gas-liquid contact between the sample liquid and the purge gas. A discharge pipe is connected to the bottom of the gas-liquid contact extractor, the pipe having a liquid sump through which the sample liquid is discharged, while blocking the outflow of the purge gas from the liquid sump.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: May 24, 2016
    Assignees: Shimadzu Corporation, GL Sciences Incorporated
    Inventors: Shinji Fukumoto, Hiroshi Yamauchi, Akira Aono, Manabu Shimomura, Yoshiyuki Takei, Tadashi Mimura, Akira Suzuki, Masahiro Furuno
  • Patent number: 9285300
    Abstract: The present invention provides a monolithic silicone in the form of an aerogel or a xerogel having flexibility and capable of dissolving molecules of a substance. This silicone monolithic body having continuous through passages is synthesized by copolymerizing starting materials of both a bifunctional alkoxysilane and a trifunctional alkoxysilane or tri- or higher functional alkoxysilanes through a sol-gel reaction for forming a Si—O network while causing phase separation.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: March 15, 2016
    Assignees: GL SCIENCES INCORPORATED, KYOTO UNIVERSITY
    Inventors: Kazuki Nakanishi, Kazuyoshi Kanamori, Gen Hayase, Masahiro Furuno, Yoshiyuki Takei
  • Patent number: 9021866
    Abstract: A gas-leak detector includes a suction pump that sucks sample gas and reference gas, two gas detection sensors, and a cell block having a cell therein. The cell receives the gasses and has two suction-gas introduction channels and a single gas discharge channel opening thereinto. The gas-leak detector detects a gas leak on the basis of outputs from the sensors. The introduction channels and the discharge channel open into the cell at a first one of opposing surfaces of the cell, the opening of the discharge channel being arranged between the openings of the two introduction channels. The sensors are on the same plane as a second one of the opposing surfaces and are arranged between the opening of the discharge channel and the openings of the introduction channels. The suction pump is arranged on the cell block and communicates with the opening of the discharge channel.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: May 5, 2015
    Assignee: GL Sciences Incorporated
    Inventors: Yoshihiko Takano, Xiao-Jing Zhou, Noriyoshi Yokosuka
  • Patent number: 8935941
    Abstract: To use a monolithic silica body in chromatography with a HPLC column or a GC column and to simplify the use thereof as a separation medium, it is intended to provide a method of cladding a main body of a monolithic adsorbent or separating agent with glass so as to protect the outer surface, and to provide a separation medium prepared by the method. To this end, a monolithic silica body alone is formed by molding, and the molding is coated with a glass body; and then the glass body and the monolithic silica body are fused and integrated at the melting temperature of the glass body at an appropriate pressure. The surface of the resulting monolithic silica body clad with glass is strongly protected by the glass, and the homogeneity of the interior of the monolithic silica body is maintained, and thus uniform flow of a sample solution ensures analytical accuracy.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: January 20, 2015
    Assignee: GL Sciences Incorporated
    Inventors: Shota Miyazaki, Hiroyuki Terashima, Masahiko Nyudo, Masayoshi Ohira, Kei Morisato, Masahiro Furuno
  • Patent number: 8795410
    Abstract: The problem to be solved by the present invention is to provide a monolith adsorbent which can adsorb a target sample easily in a short time or regardless of whether the amount of the sample is small or large and extract the sample with a small amount of solvent, and easily secure the sample necessary for analysis, and a method and an apparatus for adsorption and retention using the same. The present invention is a monolith adsorbent formed by allowing a monolith structure body to contain an adsorbing material such as activated carbon or graphite, exposing the adsorbing material on the surface of the structure body and further surface-treating the surface of the monolith structure body with a hydrophobic or hydrophilic compound or a resin.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: August 5, 2014
    Assignee: GL Sciences Incorporated
    Inventors: Atsushi Sato, Hiroyuki Terashima, Yoshiyuki Takei
  • Patent number: 8586350
    Abstract: A high-purity fragment is obtained by a simple mechanism and method for separating and purifying a nucleic acid, particularly fragment DNA, extremely efficiently and with a high reproducibility, wherein elution with a high-concentration salt is not performed and necessity of elution and purification is eliminated. This mechanism is a mechanism for purifying a nucleic acid, particularly fragment DNA using a monolith structure formed with glass or silica, specifically, an integral porous body having an open structure with pores that communicate the upper end with the lower end, wherein through-pores corresponding to nucleic acid sizes of 35 bp (mer) to 100 Kbp (mer) are provided.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: November 19, 2013
    Assignee: GL Sciences Incorporated
    Inventors: Osuman Toujou, Masayoshi Ohira, Kensuke Okusa, Nobuo Seto, Masahiro Furuno
  • Publication number: 20130055791
    Abstract: A sample trapping method and apparatus uses a sample conduit for trapping a gas sample by cooling or desorbing the gas sample by heating. The sample conduit may be cooled by arranging the sample conduit in the vicinity of, or bringing the sample conduit into contact with, a cooling part of a cooling device based on a cold storage refrigerator.
    Type: Application
    Filed: February 12, 2010
    Publication date: March 7, 2013
    Applicant: GL SCIENCES INCORPORATED
    Inventors: Katsuhiko Sotomaru, Zhou Xiao-Jing, Kazuhiko Yamasaki, Atsushi Sato
  • Patent number: 8180203
    Abstract: Provided is a direct heating tube which has a sufficient heating rate and a sufficient cooling rate, and has no cold spots therein, making it possible to ensure a uniform temperature distribution in the whole part thereof or a temperature distribution having a desired temperature gradient, and making it possible to keep constant the temperature of a fluid which is caused to flow through the tube or to give a desired change to the temperature of the fluid. Provided also is a direct heating tube which does not exert an adverse influence on devices near the tube, such as a detector and an oven, even by heating the tube. In a desired portion of the tube to be heated, a second heated tube connected to a first heated tube is provided outside the first heated tube, and an electrode portion is connected to the second heated tube.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: May 15, 2012
    Assignee: GL Sciences Incorporated
    Inventor: Mitsuhiro Kurano
  • Publication number: 20110023711
    Abstract: The problem to be solved by the present invention is to provide a monolith adsorbent which can adsorb a target sample easily in a short time or regardless of whether the amount of the sample is small or large and extract the sample with a small amount of solvent, and easily secure the sample necessary for analysis, and a method and an apparatus for adsorption and retention using the same. The present invention, as the means for solving the problem, is a monolith adsorbent formed by allowing a monolith structure body to contain an adsorbing material such as activated carbon or graphite, exposing the adsorbing material on the surface of the structure body and further surface-treating the surface of the monolith structure body with a hydrophobic or hydrophilic compound or a resin.
    Type: Application
    Filed: June 18, 2008
    Publication date: February 3, 2011
    Applicant: GL SCIENCE INCORPORATED
    Inventors: Atsushi Sato, Hiroyuki Terashima, Yoshiyki Takei
  • Publication number: 20110000279
    Abstract: To use a monolithic silica body in chromatography with a HPLC column or a GC column and to simplify the use thereof as a separation medium, it is intended to provide a method of cladding a main body of a monolithic adsorbent or separating agent with glass so as to protect the outer surface, and to provide a separation medium prepared by the method. To this end, a monolithic silica body alone is formed by molding, and the molding is coated with a glass body; and then the glass body and the monolithic silica body are fused and integrated at the melting temperature of the glass body at an appropriate pressure. The surface of the resulting monolithic silica body clad with glass is strongly protected by the glass, and the homogeneity of the interior of the monolithic silica body is maintained, and thus uniform flow of a sample solution ensures analytical accuracy.
    Type: Application
    Filed: February 1, 2008
    Publication date: January 6, 2011
    Applicant: GL SCIENCES INCORPORATED
    Inventors: Shota Miyazaki, Hiroyuki Terashima, Masahiko Nyudo, Masayoshi Ohira, Kei Morisato, Masahiro Furuno
  • Patent number: 7667837
    Abstract: Provided is a capillary tube flow cell used in analyses at very low flow rates and, particularly, in liquid chromatographic analyses. To ensure that high detection sensitivity and low noise can be realized, a flow cell which houses a liquid sample and exposes the liquid sample to radiant light for analysis purposes comprises a capillary tube which has a bent portion for incident light, a bent portion for emergent light and a linear passage of appropriate length formed between the bent portions, a passage portion of the capillary tube being inserted into a slit and the slit being provided with a light pass preventing portion.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: February 23, 2010
    Assignee: GL Sciences Incorporated
    Inventors: Takeshi Iwano, Tsuyoshi Yamada, Xiaojing Zhou
  • Publication number: 20070181482
    Abstract: A high-purity fragment is obtained by a simple mechanism and method for separating and purifying a nucleic acid, particularly fragment DNA, extremely efficiently and with a high reproducibility, wherein elution with a high-concentration salt is not performed and necessity of elution and purification is eliminated. This mechanism is a mechanism for purifying a nucleic acid, particularly fragment DNA using a monolith structure formed with glass or silica, specifically, an integral porous body having an open structure with pores that communicate the upper end with the lower end, wherein through-pores corresponding to nucleic acid sizes of 35 bp (mer) to 100 Kbp (mer) are provided.
    Type: Application
    Filed: February 12, 2004
    Publication date: August 9, 2007
    Applicant: GL SCIENCES INCORPORATED
    Inventors: Abudogupur Abudokirim, Masayoshi Ohira, Kensuke Okusa, Nobuo Seto, Masahiro Furuno
  • Publication number: 20070107675
    Abstract: Provided is a direct heating tube which has a sufficient heating rate and a sufficient cooling rate, and has no cold spots therein, making it possible to ensure a uniform temperature distribution in the whole part thereof or a temperature distribution having a desired temperature gradient, and making it possible to keep constant the temperature of a fluid which is caused to flow through the tube or to give a desired change to the temperature of the fluid. Provided also is a direct heating tube which does not exert an adverse influence on devices near the tube, such as a detector and an oven, even by heating the tube. In a desired portion of the tube to be heated, a second heated tube connected to a first heated tube is provided outside the first heated tube, and an electrode portion is connected to the second heated tube.
    Type: Application
    Filed: February 13, 2004
    Publication date: May 17, 2007
    Applicant: GL SCIENCES INCORPORATED
    Inventor: Mitsuhiro Kurano