Abstract: Tantalum nitride and specifically a novel Ta3N5 nanoparticles, such as single crystalline Ta3N5 nanoparticles, are disclosed. The nanoparticles used with a co-catalyst is further disclosed. The present invention also relates to Ta3N5 nanoparticles modified with a metal oxide, such as a CoOxcocatalyst, wherein Ox represents an oxide that is part of the cobalt oxide. A catalyst, such as for water oxidation to produce O2, is disclosed. The nanoparticles can further be modified to include a water reducing catalyst. A water splitting catalyst is further disclosed. Methods of making the nanoparticles and catalyst are also disclosed. Methods to split water utilizing the catalyst are further described.
Type:
Application
Filed:
February 14, 2023
Publication date:
May 22, 2025
Applicants:
Global Advanced Metals USA, Inc., Shinshu University
Inventors:
Kazunari DOMEN, Takashi HISATOMI, Mary KRAUSE, Aijun YIN, Gordon SMITH
Abstract: Single crystalline nanoparticles that are tantalum nitride doped with at least one metal are described. The single crystalline nanoparticles can be doped with two metals such as Zr and Mg. The single crystalline nanoparticles can be Ta3N5:Mg+Zr, or Ta3N5:Mg, or Ta3N5:Zr or any combination thereof. Catalyst containing the single crystalline nanoparticles alone or with one or more co-catalyst are further described along with methods of making the nanoparticles and catalyst. Methods to split water utilizing the catalyst are further described.
Type:
Application
Filed:
May 4, 2022
Publication date:
June 20, 2024
Applicants:
Global Advanced Metals USA, Inc., Shinshu University
Inventors:
Kazunari DOMEN, Takashi HISATOMI, Jiadong XIAO, Mary KRAUSE, Aijun YIN, Gordon SMITH
Abstract: Tantalum powder that is highly spherical is described. The tantalum powder can be useful in additive manufacturing and other uses. Methods to make the tantalum powder are further described as well as methods to utilize the tantalum powder in additive manufacturing processes. Resulting products and articles using the tantalum powder are further described.
Abstract: Niobium alloy powder that is highly spherical is described. The niobium alloy powder can be useful in additive manufacturing and other uses. Methods to make the niobium alloy powder are further described as well as methods to utilize the niobium alloy powder in additive manufacturing processes. Resulting products and articles using the niobium alloy powder are further described.
Abstract: A tantalum-titanium alloy powder that is highly spherical is described. The alloy powder can be useful in additive manufacturing and other uses. Methods to make the alloy powder are further described as well as methods to utilize the alloy powder in additive manufacturing processes. Resulting products and articles using the alloy powder are further described.
Abstract: A Ti—Zr alloy in powder form is described. Sintered pellets containing the Ti—Zr alloy powder of the present invention, as well as capacitor anodes, are further described.
Type:
Application
Filed:
April 10, 2020
Publication date:
October 29, 2020
Applicant:
Global Advanced Metals USA, Inc.
Inventors:
Mary KRAUSE, Aamir ABID, Aijun YIN, Lei WANG, Craig SUNGAIL, Geoffrey SMITH
Abstract: Tantalum powder that is highly spherical is described. The tantalum powder can be useful in additive manufacturing and other uses. Methods to make the tantalum powder are further described as well as methods to utilize the tantalum powder in additive manufacturing processes. Resulting products and articles using the tantalum powder are further described.
Abstract: The present invention relates to sputtering targets and other metal articles as well as methods of making the same. More particularly, the present invention relates to methods for forming powder metallurgy sputtering targets and other metallurgical articles made from metal powders that include spherical metal powders, and the resulting product.
Type:
Application
Filed:
February 27, 2019
Publication date:
September 5, 2019
Applicant:
Global Advanced Metals USA, Inc.
Inventors:
Craig M. Sungail, Aamir Dawood Abid, Stephen Krause
Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
Abstract: A tantalum powder having a value of hydrogen (H) content (ppm) of the tantalum powder divided by Brunauer-Emmett-Teller (BET) surface area (m2/g) of the tantalum powder (H/BET) is greater than 100 is provided. The tantalum powder can be used as an anode of a capacitor, such as a solid electrolytic capacitor, to obtain a capacitor having large capacitance and low current leakage. Methods of producing the tantalum powder, anode, and capacitors including the tantalum powder, also are provided.
Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
Abstract: The present invention related to a method to make capacitor grade powder. The method includes the use of a spray dryer that includes a rotating atomizer disk to form agglomerated powder and the method further includes a heat treatment step. Capacitor grade powder formed by the methods of the present invention are further described.
Type:
Application
Filed:
August 12, 2014
Publication date:
July 27, 2017
Applicant:
Global Advanced Metals USA, Inc.
Inventors:
Eiji Kataoka, Shuhei Yoshikawa, John Koenitzer
Abstract: A method of making metal articles as well as sputtering targets is described, which involves deforming an ingot to preferred dimensions. In addition, products made by the process of the present invention are further described.
Type:
Grant
Filed:
January 29, 2013
Date of Patent:
March 10, 2015
Assignee:
Global Advanced Metals, USA, Inc.
Inventors:
Craig M. Carpenter, James D. Maguire, Jr.
Abstract: A method of heat treating metal powder and/or metal oxide powder by microwave energy is described. Furthermore, products made by the various processes of the present invention are further described.
Abstract: A method of making sputter targets using rotary axial forging is described. Other thermomechanical working steps can be used prior to and/or after the forging step. Sputter targets are further described which can have unique grain size and/or crystal structures.
Type:
Grant
Filed:
July 18, 2012
Date of Patent:
August 6, 2013
Assignee:
Global Advanced Metals, USA, Inc.
Inventors:
John P. Matera, Robert B. Ford, Charles E. Wickersham, Jr.
Abstract: A method of making metal articles as well as sputtering targets is described, which involves deforming an ingot to preferred dimensions. In addition, products made by the process of the present invention are further described.
Abstract: A process and system for producing tantalum or other valve metal particles is provided comprising forming tantalum particles in a reduction process carried out in a reactor vessel, and using a siphon to transfer fine tantalum particles out of the reaction mixture to a recovery vessel. This particle transfer can occur while the reaction mixture is agitated. The tantalum particles can be automatically withdrawn when the reaction mixture has a depth level greater than the fluid level of the tantalum fine particle recovery vessel, and outflow automatically stops when the fluid levels of the reactor and particle recovery vessel equilibrate. Tantalum or other valve metal powders made by the processes, and capacitors made with valve metal powders are also provided.