Abstract: Tantalum powder that is highly spherical is described. The tantalum powder can be useful in additive manufacturing and other uses. Methods to make the tantalum powder are further described as well as methods to utilize the tantalum powder in additive manufacturing processes. Resulting products and articles using the tantalum powder are further described.
Abstract: The present invention relates to sputtering targets and other metal articles as well as methods of making the same. More particularly, the present invention relates to methods for forming powder metallurgy sputtering targets and other metallurgical articles made from metal powders that include spherical metal powders, and the resulting product.
Type:
Grant
Filed:
February 27, 2019
Date of Patent:
February 11, 2025
Assignee:
GLOBAL ADVANCED METALS USA, INC.
Inventors:
Craig M. Sungail, Aamir Dawood Abid, Stephen Krause
Abstract: A tantalum-titanium alloy powder that is highly spherical is described. The alloy powder can be useful in additive manufacturing and other uses. Methods to make the alloy powder are further described as well as methods to utilize the alloy powder in additive manufacturing processes. Resulting products and articles using the alloy powder are further described.
Abstract: Single crystalline nanoparticles that are tantalum nitride doped with at least one metal are described. The single crystalline nanoparticles can be doped with two metals such as Zr and Mg. The single crystalline nanoparticles can be Ta3N5:Mg+Zr, or Ta3N5:Mg, or Ta3N5:Zr or any combination thereof. Catalyst containing the single crystalline nanoparticles alone or with one or more co-catalyst are further described along with methods of making the nanoparticles and catalyst. Methods to split water utilizing the catalyst are further described.
Type:
Application
Filed:
May 4, 2022
Publication date:
June 20, 2024
Applicants:
Global Advanced Metals USA, Inc., Shinshu University
Inventors:
Kazunari DOMEN, Takashi HISATOMI, Jiadong XIAO, Mary KRAUSE, Aijun YIN, Gordon SMITH
Abstract: Tantalum powder that is highly spherical is described. The tantalum powder can be useful in additive manufacturing and other uses. Methods to make the tantalum powder are further described as well as methods to utilize the tantalum powder in additive manufacturing processes. Resulting products and articles using the tantalum powder are further described.
Abstract: Tantalum powder that is highly spherical is described. The tantalum powder can be useful in additive manufacturing and other uses. Methods to make the tantalum powder are further described as well as methods to utilize the tantalum powder in additive manufacturing processes. Resulting products and articles using the tantalum powder are further described.
Abstract: A Ti—Zr alloy in powder form is described. Sintered pellets containing the Ti—Zr alloy powder of the present invention, as well as capacitor anodes, are further described.
Type:
Grant
Filed:
April 10, 2020
Date of Patent:
July 19, 2022
Assignee:
GLOBAL ADVANCED METALS USA, INC.
Inventors:
Mary Krause, Aamir Abid, Aijun Yin, Lei Wang, Craig Sungail, Geoffrey Smith
Abstract: Niobium alloy powder that is highly spherical is described. The niobium alloy powder can be useful in additive manufacturing and other uses. Methods to make the niobium alloy powder are further described as well as methods to utilize the niobium alloy powder in additive manufacturing processes. Resulting products and articles using the niobium alloy powder are further described.
Abstract: A tantalum-titanium alloy powder that is highly spherical is described. The alloy powder can be useful in additive manufacturing and other uses. Methods to make the alloy powder are further described as well as methods to utilize the alloy powder in additive manufacturing processes. Resulting products and articles using the alloy powder are further described.
Abstract: A Ti—Zr alloy in powder form is described. Sintered pellets containing the Ti—Zr alloy powder of the present invention, as well as capacitor anodes, are further described.
Type:
Application
Filed:
April 10, 2020
Publication date:
October 29, 2020
Applicant:
Global Advanced Metals USA, Inc.
Inventors:
Mary KRAUSE, Aamir ABID, Aijun YIN, Lei WANG, Craig SUNGAIL, Geoffrey SMITH
Abstract: Tantalum powder that is highly spherical is described. The tantalum powder can be useful in additive manufacturing and other uses. Methods to make the tantalum powder are further described as well as methods to utilize the tantalum powder in additive manufacturing processes. Resulting products and articles using the tantalum powder are further described.
Abstract: The present invention relates to sputtering targets and other metal articles as well as methods of making the same. More particularly, the present invention relates to methods for forming powder metallurgy sputtering targets and other metallurgical articles made from metal powders that include spherical metal powders, and the resulting product.
Type:
Application
Filed:
February 27, 2019
Publication date:
September 5, 2019
Applicant:
Global Advanced Metals USA, Inc.
Inventors:
Craig M. Sungail, Aamir Dawood Abid, Stephen Krause
Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
Abstract: A tantalum powder having a value of hydrogen (H) content (ppm) of the tantalum powder divided by Brunauer-Emmett-Teller (BET) surface area (m2/g) of the tantalum powder (H/BET) is greater than 100 is provided. The tantalum powder can be used as an anode of a capacitor, such as a solid electrolytic capacitor, to obtain a capacitor having large capacitance and low current leakage. Methods of producing the tantalum powder, anode, and capacitors including the tantalum powder, also are provided.
Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.