Abstract: An algae cultivation system includes generating a translating hydraulic jump wave that travels across a gas-liquid interface of an algae cultivation fluid contained in the algae cultivation system. The translating hydraulic jump wave has Froude number greater than 1.
Abstract: Algae harvesting and cultivating systems and methods for producing high concentrations of algae product with minimal energy. In an embodiment, a dead-end filtration system and method includes at least one tank and a plurality hollow fiber membranes positioned in the at least one tank. An algae medium is pulled through the hollow fiber membranes such that a retentate and a permeate are produced.
Abstract: Algae harvesting and cultivating systems and methods for producing high concentrations of algae product with minimal energy. In an embodiment, a dead-end filtration system and method includes at least one tank and a plurality hollow fiber membranes positioned in the at least one tank. An algae medium is pulled through the hollow fiber membranes such that a retentate and a permeate are produced.
Abstract: Algae harvesting and cultivating systems and methods for producing high concentrations of algae product with minimal energy. In an embodiment, a dead-end filtration system and method includes at least one tank and a plurality hollow fiber membranes positioned in the at least one tank. An algae medium is pulled through the hollow fiber membranes such that a retentate and a permeate are produced.
Abstract: Algae harvesting and cultivating systems and methods for producing high concentrations of algae product with minimal energy. In an embodiment, an algae harvesting method is provided for performing dead-end filtration in an algae harvesting system having at least one treatment tank defining a plurality of filtration stages including at least a first filtration stage and a second filtration stage. An algae medium is pulled through the hollow fiber membranes such that a retentate and a permeate are produced.
Abstract: An algae cultivation system includes generating a translating hydraulic jump wave that travels across a gas-liquid interface of an algae cultivation fluid contained in the algae cultivation system. The translating hydraulic jump wave has Froude number greater than 1.
Abstract: An open raceway algae cultivation system includes a channel configured to contain an algae cultivation fluid. The channel includes a contraction zone having a width and a depth. A pump is configured to circulate the algae cultivation fluid in the channel. A width of the contraction zone decreases leading into the entrance of the pump and a depth of the contraction zone is greater than a depth of at least a portion of the channel located outside of the contraction zone.
Abstract: Algae cultivation systems and methods account for weather variations that can affect algae cultivation. In one system, an open raceway algae cultivation system includes a channel having a high section and a low liquid collection section. The channel is sloped to allow substantially all of an algae cultivation fluid in the high section to flow downwardly into the low liquid collection section. A barrier is removably positioned in the high section and a drain is positioned in the high section such that, when substantially all of the algae cultivation fluid has collected in the low liquid collection section, any rainwater that falls in the high section flows into the drain, without the rainwater mixing with the algae cultivation fluid in the low liquid collection section.
Abstract: Algae harvesting and cultivating systems and methods for producing high concentrations of algae product with minimal energy. In an embodiment, a dead-end filtration system and method includes at least one tank and a plurality hollow fiber membranes positioned in the at least one tank. An algae medium is pulled through the hollow fiber membranes such that a retentate and a permeate are produced.
Type:
Grant
Filed:
September 22, 2016
Date of Patent:
December 10, 2019
Assignee:
Global Algae Technologies, LLC
Inventors:
David A. Hazlebeck, William Rickman, Rodney Corpuz
Abstract: Algae harvesting and cultivating systems and methods for producing high concentrations of algae product with minimal energy. In an embodiment, a dead-end filtration system and method includes at least one tank and a plurality hollow fiber membranes positioned in the at least one tank. An algae medium is pulled through the hollow fiber membranes such that a retentate and a permeate are produced.