Abstract: A control method and system for a hybrid vehicle powertrain with an electric motor in a power flow path between an internal combustion engine and a multiple-ratio geared transmission. Motor torque, which is added to engine torque to obtain an effective transmission input torque, is modulated to achieve smooth power-on upshifts and coasting downshifts.
Type:
Grant
Filed:
August 6, 2007
Date of Patent:
February 19, 2008
Assignee:
Ford Global Technologies, LLC
Inventors:
Walt Ortmann, Dan Colvin, Bob Fozo, Michael Encelewski, Marvin Kraska
Abstract: A system for a vehicle, comprising of an engine, and a fuel vapor storage system coupled to the engine configured to store and release fuel vapors, the system further configured to route exhaust gas from the engine to the vapor storage system and where adsorbed vapors are released into the exhaust gas before the exhaust gas is re-inducted into the engine to be burned.
Abstract: This catalyst system simultaneously removes ammonia and enhances net NOx conversion by placing an NH3-SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3-SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap—enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3-SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
Type:
Grant
Filed:
October 22, 2002
Date of Patent:
February 19, 2008
Assignee:
Ford Global Technologies, LLC
Inventors:
Haren S Gandhi, John Vito Cavataio, Robert Henry Hammerle, Yisun Cheng
Abstract: Engine cylinder reactivation from a fuel-cut state is controlled based on a calculated future engine speed and a minimum allowable engine speed. The future engine speed is calculated based on the current rate of change of engine speed and a duration required to reactivate an engine cylinder. The duration can be in the time domain, or engine event domain, for example.
Abstract: A catalyst system to provide emission reductions under lean and stoichiometric conditions. The catalyst system comprises a forward catalyst having a first cerium-free zone including oxides of aluminum, alkali metals and alkaline earth metals and precious metals and a second zone with a lower loading of precious metals, oxides of aluminum, alkali metals or alkaline earth metals. This forward catalyst stores NOx emissions under lean conditions for subsequent reduction and converts HC, CO and NOx during stoichiometric operation. The second downstream catalyst includes precious metals, reduces emissions under stoichiometric conditions, and stores any residual NOx emitted from the first catalyst for subsequent reduction. In another embodiment, a forward catalyst has top and bottom layers designed to reduce emissions under lean conditions. In this embodiment, a second downstream catalyst is used to reduce emissions under stoichiometric conditions.
Type:
Grant
Filed:
October 24, 2002
Date of Patent:
February 12, 2008
Assignee:
Ford Global Technologies, LLC
Inventors:
Haren S Gandhi, Jun (John) Li, Joseph Robert Theis, Ronald Gene Hurley, William Lewis Henderson Watkins