Abstract: In some embodiments, an electrochemical sensing system includes a working electrode and a reference electrode. At least a portion of the working electrode includes rhodium. An electrical circuit is electronically coupled to the working electrode and the reference electrode. The electrical circuit is configured to bias the working electrode at voltage of less than about 0.4 V which is sufficient to electrochemically decompose a target analyte, and to measure a current corresponding to the concentration of the target analyte. In some embodiments, a biosensing molecule can be disposed on the working electrode and is operative to catalytically decompose a non-electroactive target analyte to yield and an electroactive by-product. In some embodiment, the reference electrode can include rhodium and its oxides.
Abstract: The invention disclosed herein is a device having an analyte sensor, having a working electrode and a membrane disposed over the electrode and methods of making the device. The multilayered membrane is formed by chemically fusing an inner layer of a polyelectrolyte with an outer layer of an ethylenically unsaturated prepolymer through a chain-growth polymerization reaction of an ethylenically unsaturated silicone prepolymer, a hydride silicone prepolymer, a non-silicone ethylenically unsaturated hydrophilic monomer, a filler and a metal catalyst. The silicone composition formed from the reaction mixture restricts diffusion of an analyte through the membrane. More specifically, the membrane formed comprises a restrictive domain that controls the flux of oxygen and glucose through the membrane to the working electrode.
Abstract: The invention disclosed herein is a device having an analyte sensor, having a working electrode and a membrane disposed over the electrode and methods of using the device. The multilayered membrane is formed by chemically fusing an inner layer of a polyelectrolyte with an outer layer of an ethylenically unsaturated prepolymer through a chain-growth polymerization reaction.
Abstract: In some embodiments, an electrochemical sensing system includes a working electrode and a reference electrode. At least a portion of the working electrode includes rhodium. An electrical circuit is electronically coupled to the working electrode and the reference electrode. The electrical circuit is configured to bias the working electrode at voltage of less than about 0.4 V which is sufficient to electrochemically decompose a target analyte, and to measure a current corresponding to the concentration of the target analyte. In some embodiments, a biosensing molecule can be disposed on the working electrode and is operative to catalytically decompose a non-electroactive target analyte to yield and an electroactive by-product. In some embodiment, the reference electrode can include rhodium and its oxides.