Patents Assigned to GMZ Energy, Inc.
  • Publication number: 20160163948
    Abstract: Methods of fabricating a thermoelectric element include bonding at least one thermoelectric material leg to at least one of a header and an electrical connector using a direct bonding process. The direct bonding process may include liquid diffusion (e.g., brazing) or solid state diffusion bonding. The thermoelectric material leg may be directly bonded to the header or electrical connector without the use of a metal contact layer between the thermoelectric material leg and the header or electrical connector.
    Type: Application
    Filed: March 12, 2014
    Publication date: June 9, 2016
    Applicant: GMZ Energy, Inc.
    Inventor: Xiaowei Wang
  • Publication number: 20140261608
    Abstract: A thermoelectric power generating module incorporates compliance into the module using a three-dimensional flexible connector. The flexible connector may relieve thermal stress and improve reliability for thermoelectric modules. In addition, the connector may provide a buffer layer (e.g., cushion) to damp mechanical vibrations. In further embodiments, a thermal interface structure for a thermoelectric device includes a thermally conductive body comprising a first compliant surface for directly interfacing with a first component of the thermoelectric device and a second compliant surface, opposite the first surface, for directly interfacing with a second component of the thermoelectric device.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: GMZ Energy, Inc.
    Inventor: Xiaowei Wang
  • Publication number: 20140261607
    Abstract: A thermoelectric power generating module incorporates compliance into the module using a three-dimensional flexible connector. The flexible connector may relieve thermal stress and improve reliability for thermoelectric modules. In addition, the connector may provide a buffer layer (e.g., cushion) to damp mechanical vibrations. In further embodiments, a thermal interface structure for a thermoelectric device includes a thermally conductive body comprising a first compliant surface for directly interfacing with a first component of the thermoelectric device and a second compliant surface, opposite the first surface, for directly interfacing with a second component of the thermoelectric device.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: GMZ Energy, Inc.
    Inventors: Yanliang Zhang, Xiaowei Wang, Gang Chen, Jonathan D'Angelo, Bed Poudel
  • Publication number: 20140230869
    Abstract: A self-powered boiler comprising a burner that burns a fuel to produce a hot combustion product that is used to heat a fluid and a thermoelectric generator (TEG) system comprising a first side in thermal communication with the hot combustion product and a second side in thermal communication with a lower temperature region of the boiler, and a plurality of thermoelectric converters disposed therebetween for generating electric power, wherein the electric power generated by the TEG system is equal to or greater than a total electric power consumed by the boiler under normal operating conditions.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 21, 2014
    Applicant: GMZ Energy, Inc.
    Inventors: Gang Chen, Yanliang Zhang, James Christopher Caylor, Jonathan D'Angelo, Xiaowei Wang
  • Publication number: 20140102498
    Abstract: Methods of fabricating a thermoelectric element with reduced yield loss include forming a solid body of thermoelectric material having first dimension of 150 mm or more and thickness dimension of 5 mm or less, and dicing the body into a plurality of thermoelectric legs, without cutting along the thickness dimension of the body. Further methods include providing a metal material over a surface of a thermoelectric material, and hot pressing the metal material and the thermoelectric material to form a solid body having a contact metal layer and a thermoelectric material layer.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 17, 2014
    Applicant: GMZ Energy, Inc.
    Inventors: Bed Poudel, Giri Joshi, Jian Yang, Tej Panta, James Christopher Caylor, Jonathan D'Angelo, Zhifeng Ren
  • Patent number: 8580100
    Abstract: Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: November 12, 2013
    Assignees: Massachusetts Institute of Technology, The Trustees of Boston College, GMZ Energy, Inc.
    Inventors: Hsien-Ping Feng, Gang Chen, Yu Bo, Zhifeng Ren, Shuo Chen, Bed Poudel
  • Publication number: 20130175484
    Abstract: Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.
    Type: Application
    Filed: December 19, 2012
    Publication date: July 11, 2013
    Applicants: TRUSTEES OF BOSTON COLLEGE, GMZ ENERGY, INC.
    Inventors: GMZ Energy, Inc., Trustees of Boston College
  • Publication number: 20120326097
    Abstract: Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.
    Type: Application
    Filed: December 19, 2011
    Publication date: December 27, 2012
    Applicants: Trustees of Boston College, GMZ Energy, Inc.
    Inventors: Zhifeng Ren, Xiao Yan, Giri Joshi, Gang Chen, Bed Poudel, James Christopher Caylor
  • Publication number: 20120217165
    Abstract: Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.
    Type: Application
    Filed: February 24, 2011
    Publication date: August 30, 2012
    Applicants: Massachusetts Institute of Technology, GMZ Energy, Inc., The Trustees of Boston College
    Inventors: Hsien-Ping Feng, Gang Chen, Yu Bo, Zhifeng Ren, Shuo Chen, Bed Poudel
  • Publication number: 20120160290
    Abstract: An apparatus includes an evacuated enclosure which comprises a tubular member extending along a longitudinal axis, a radiation absorber disposed in the enclosure and having a front surface and a back surface, the front surface being adapted for exposure to solar radiation so as to generate heat, at least one thermoelectric converter disposed in the enclosure and thermally coupled to the absorber, the converter having a high-temperature end to receive at least a portion of the generated heat, such that a temperature differential is achieved across the at least one thermoelectric converter, a support structure disposed in the enclosure coupled to a low-temperature end of the thermoelectric converter, where the support structure removes heat from a low-temperature end of the thermoelectric converter, and a heat conducting element extending between the support structure and the evacuated enclosure and adapted to transfer heat from the support structure to the enclosure.
    Type: Application
    Filed: May 28, 2010
    Publication date: June 28, 2012
    Applicant: GMZ Energy, Inc.
    Inventors: Gang Chen, Zhifeng Ren, Bed Poudel, Aaron Bent