Patents Assigned to GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY
-
Publication number: 20210389241Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: ApplicationFiled: August 20, 2021Publication date: December 16, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Publication number: 20210389242Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.Type: ApplicationFiled: August 20, 2021Publication date: December 16, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
-
Publication number: 20210387033Abstract: Disclosed is a firefighting composition of the surfactants below and water. The values of m, n, x, and y are independently selected positive integers. R is an organic group. R? is a siloxane group.Type: ApplicationFiled: August 27, 2021Publication date: December 16, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Ramagopal Ananth, Arthur W. Snow, Katherine Hinnant, Spencer L. Giles
-
Publication number: 20210389126Abstract: An improved method for evaluating GaN wafers. RMS analysis of wafer heights obtained by optical interferometric profilometry is combined with an extreme Studentized deviate (ESD) analysis to obtain a map of the wafer surface that more accurately identifies areas on the surface of a GaN wafer having defects that making those areas unsuitable for fabrication of a vertical electronic device thereon such as bumps and/or pits that can lower the breakdown voltage, increase the on-resistance, and increase the ideality factor.Type: ApplicationFiled: June 11, 2021Publication date: December 16, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: James C. Gallagher, Travis J. Anderson, Jennifer K. Hite, Karl D. Hobart
-
Patent number: 11197972Abstract: In an example, a ventilator includes an outer container containing liquid, an inverted container submerged in the liquid to provide inverted container space between a closed top and an inner container liquid level; gas supply line to supply breathing gas to the inverted container space; and inhalation line having an inlet in the inverted container space to provide breathing gas to patient. The inverted container moves upward from a first elevation when the inverted container space reaches a hydrostatic delivery pressure and volume of the inverted container space increases. The inverted container stops moving upward and the gas supply line stops supplying when the inverted container reaches a second elevation above the first. Based on a breath demand signal or preset timing, the inhalation line opens to permit flow of breathing gas to the patient at the hydrostatic delivery pressure, lowering the inverted container due to lost buoyancy resulting in sinkage.Type: GrantFiled: April 29, 2021Date of Patent: December 14, 2021Assignee: The Government of the United States of America, as represented by the Secretary of Homeland SecurityInventors: Bryson Jacobs, Savannah Lyle
-
Patent number: 11201058Abstract: A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm?3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).Type: GrantFiled: July 13, 2020Date of Patent: December 14, 2021Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Travis J. Anderson, James C. Gallagher, Marko J. Tadjer, Alan G. Jacobs, Boris N. Feigelson
-
Publication number: 20210381127Abstract: A method for growing polycrystalline diamond films having engineered grain growth and microstructure. Grain growth of a polycrystalline diamond film on a substrate is manipulated by growing the diamond on a nanopatterned substrate having features on the order of the initial grain size of the diamond film. By growing the diamond on such nanopatterned substrates, the crystal texture of a polycrystalline diamond film can be engineered to favor the preferred <110> orientation texture, which in turn enhances the thermal conductivity of the diamond film.Type: ApplicationFiled: August 24, 2021Publication date: December 9, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Karl D. Hobart, Tatyana I. Feygelson, Marko J. Tadjer, Travis J. Anderson, Andrew D. Koehler, Samuel Graham, JR., Mark Goorsky, Zhe Cheng, Luke Yates, Tingyu Bai, Yekan Wang
-
Publication number: 20210379411Abstract: In an example, a respirator includes a respirator body having a distal portion and a proximal portion, the distal portion including a filter housing wall and an open distal end. The proximal portion includes a facial interface which is compliant and deformable from an undeformed state to a deformed state to conform to a facial contour of an individual. One or more filter frames are inserted into the distal portion and supported by the filter housing wall to separate filter media on opposite sides of at least one of the one or more filter frames. A filter cover is releasably attached to the open distal end to enclose the one or more filter frames and filter media, forming a filter housing. The one or more filter frames are removable from the distal portion and replaced into the distal portion to allow replacement of the filter media.Type: ApplicationFiled: November 12, 2020Publication date: December 9, 2021Applicant: The Government of the United States of America, as represented by the Secretary of Homeland SecurityInventors: Michael Daeffler, Michael Plumley, Ronald Adrezin
-
Publication number: 20210378590Abstract: In an example, a method of detecting cyanide exposure of an individual comprises measuring a thiocyanate level of the individual, and comparing the measured thiocyanate level to a preset thiocyanate threshold to determine whether the measured thiocyanate level is above the preset thiocyanate threshold indicating a level of acute cyanide poisoning for which medical treatment is recommended to treat health effects of the exposure.Type: ApplicationFiled: April 30, 2021Publication date: December 9, 2021Applicant: The Government of the United States of America, as represented by the Secretary of Homeland SecurityInventors: David A. Reed, George C. Emmett
-
Publication number: 20210384692Abstract: A laser architecture for selectively producing short high-energy laser pulses having octave-spanning, continuous tunability. Two oppositely chirped pulses are used in combination with a pair of tunable pulse stretcher/compressors to produce a short, high-energy, tunable, broadband pulse.Type: ApplicationFiled: August 26, 2021Publication date: December 9, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventor: Michael H. Helle
-
Patent number: 11191824Abstract: A method of producing purified FMDV VLPs, comprising contacting cells containing FMDV VLPs with a lysis buffer and allowing the cells to lyse, the lysis buffer comprising 10-20 mM Tris-HCl, 150-200 mM NaCl, 3 mM MgCl2, and 1% Triton X-100, wherein the lysis buffer does not contain EDTA; centrifuging a solution; and removing a supernatant from the solution, the supernatant containing the purified FMDV VLPs.Type: GrantFiled: May 20, 2021Date of Patent: December 7, 2021Assignee: The Government of the United States of America, as represented by the Secretary of Homeland SecurityInventor: Michael Puckette
-
Patent number: 11193526Abstract: In an example, a compliant shaft enclosure support system for coupling to a shaft enclosure surrounding a shaft includes a bar having a first member slidably coupled to a second member. The bar is oriented along the pitch axis of the shaft. A first bar end of the bar is rotatably connected, around the roll axis and pitch axis of the shaft, to the shaft enclosure at a first connection. A second bar end of the bar is rotatably connected, around the roll axis and pitch axis, to the structure at a second connection. A link is rotatably connected, around the roll axis, at a first link end to the bar, at an intermediate location spaced from the first and second bar ends. The link is rotatably connected, around the pitch axis, at a second link end to the shaft enclosure at a third connection spaced from the first connection.Type: GrantFiled: April 6, 2021Date of Patent: December 7, 2021Assignee: The Government of the United States of America, as represented by the Secretary of Homeland SecurityInventors: Ronald Adrezin, Michael Daeffler, Michael F. Derrico, Mary Shalane Regan, Matthew K. Mothander, Ryan R. Young
-
Patent number: 11192182Abstract: A substrate for 3D printing using a cold spray technique. The substrate of the present invention has a porous surface with the size of pores smaller than approximately 24.4 times the mean particle size of feedstock powders for cold spray processing and larger than or equal to approximately 6.84 times the mean particle size. Due to no adhesion of a 3D-printed part to the porous regions of the substrate, the parts fabricated by cold spray can be easily removed from the porous substrate without cutting.Type: GrantFiled: November 15, 2018Date of Patent: December 7, 2021Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventor: Chun-Hsien Wu
-
Patent number: 11196179Abstract: Systems and methods are provided for implementing wideband radiators that conform to regular equilateral triangular lattices with little to no performance compromise for typical offset pairs of dual-polarized element arrangements. This general radiator family/group/configuration can be referred to as the Slant Tri-V (STV) element based on the basic characteristic set of this radiator group and relative differences to conventional array elements normally seen on rectangular or triangular lattice arrangements. The STV array element has wideband, dual-polarized operation and conforms to the most efficiently sampled array lattice for the lowest array element count possible for phased arrays.Type: GrantFiled: May 18, 2020Date of Patent: December 7, 2021Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventor: Rick Kindt
-
Patent number: 11193914Abstract: A photoacoustic photon meter includes: a photoacoustic generative array including carbon nanotubes disposed in a photoacoustic generating pattern, such that the carbon nanotubes: receive photons comprising optical energy, and produce thermal energy from the optical energy; and a superstratum including a thermally expandable elastomer on which the photoacoustic generative array is fixedly disposed in position on the superstratum to spatially conserve the photoacoustic generating pattern, and such that the superstratum: is optically transparent to the photons; receives the thermal energy from the photoacoustic generative array; expands and contracts in response to receipt of the thermal energy; and produces photoacoustic pressure waves in response to the expansion and contraction, the photoacoustic pressure waves including a photoacoustic intensity and photoacoustic frequency that are based upon an amount of optical pressure applied to the carbon nanotubes by the photons, a spatial photon fluence of the photonsType: GrantFiled: January 28, 2020Date of Patent: December 7, 2021Assignee: GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCEInventors: Jeeseong Hwang, Christopher Yung, Kimberly Ann Briggman, John Henry Lehman
-
Transferring Large-Area Group III-Nitride Semiconductor Material and Devices to Arbitrary Substrates
Publication number: 20210375680Abstract: Methods for obtaining a free-standing thick (>5 ?m) epitaxial material layer or heterostructure stack and for transferring the thick epitaxial layer or stack to an arbitrary substrate. A thick epitaxial layer or heterostructure stack is formed on an engineered substrate, with a sacrificial layer disposed between the epitaxial layer and the engineered substrate. When the sacrificial layer is removed, the epitaxial layer becomes a thick freestanding layer that can be transferred to an arbitrary substrate, with the remaining engineered substrate being reusable for subsequent material layer growth. In an exemplary case, the material layer is a GaN layer and can be selectively bonded to an arbitrary substrate to selectively produce a Ga-polar or an N-polar GaN layer.Type: ApplicationFiled: May 24, 2021Publication date: December 2, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Travis J. Anderson, Marko J. Tadjer, Karl D. Hobart -
Publication number: 20210376484Abstract: A phased array antenna that includes a base plate; first and second spaced apart radiating elements formed by at least one conductive layer disposed on at least one dielectric layer that projects from the base plate; and a pillar disposed between the first and second spaced apart radiating elements, wherein the pillar is electrically connected to the base plate, and the first and second spaced apart radiating elements are configured to capacitively couple to the pillar.Type: ApplicationFiled: August 9, 2021Publication date: December 2, 2021Applicants: The MITRE Corporation, The Government of the United States of America, as Represented by the Secretary of the NavyInventors: Wajih ELSALLAL, Jamie HOOD, Al LOCKER, Rick W. KINDT
-
Publication number: 20210370013Abstract: In an example, a ventilator includes an outer container containing liquid, an inverted container submerged in the liquid to provide inverted container space between a closed top and an inner container liquid level; gas supply line to supply breathing gas to the inverted container space; and inhalation line having an inlet in the inverted container space to provide breathing gas to patient. The inverted container moves upward from a first elevation when the inverted container space reaches a hydrostatic delivery pressure and volume of the inverted container space increases. The inverted container stops moving upward and the gas supply line stops supplying when the inverted container reaches a second elevation above the first. Based on a breath demand signal or preset timing, the inhalation line opens to permit flow of breathing gas to the patient at the hydrostatic delivery pressure, lowering the inverted container due to lost buoyancy resulting in sinkage.Type: ApplicationFiled: April 29, 2021Publication date: December 2, 2021Applicant: The Government of the United States of America, as represented by the Secretary of Homeland SecurityInventors: Bryson Jacobs, Savannah Lyle
-
Publication number: 20210373150Abstract: In an example, information related to a user of a mobile device and to an item associated with the user is received from a network. Based on the information a screening threshold is determined. The screening threshold is communicated to an electronic physical screening device and a direction instruction, indicating a location of a physical screening area corresponding to the electronic physical screening device, is communicated to the mobile device. The direction instruction causes the mobile device to display a direction information, directing the user to the physical screening area, for a physical screening in accordance with the threshold.Type: ApplicationFiled: August 12, 2021Publication date: December 2, 2021Applicant: The Government of the United States of America, as represented by the Secretary of Homeland SecurityInventor: Arun Vemury
-
Patent number: 11187571Abstract: An absolute mass balance determines an absolute mass of an object and includes: a dual diameter wheel including: a balance fulcrum; and a balance beam disposed on the balance fulcrum and including: a main mass arm and a counter mass arm; a main mass receiver that receives the object; a main magnet system including: a first main coil that produces a first magnetic field; a second main coil that produces a second magnetic field; and a permanent magnet that produces a third magnetic field that interacts with the first magnetic field and the second magnetic field; a displacement measuring system that provides a null position of the dual diameter wheel and measures a velocity of the main magnet system; and a driving motor including: an eddy current damper that provides a constant velocity of the main mass receiver; and a counter mass magnet system.Type: GrantFiled: December 6, 2019Date of Patent: November 30, 2021Assignee: GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCEInventors: Leon Shih Chao, Jon Robert Pratt