Patents Assigned to Graphenix Development, Inc.
  • Patent number: 11437624
    Abstract: A method of making an anode for use in an energy storage device includes providing a current collector having an electrically conductive layer and a metal oxide layer overlaying over the electrically conductive layer. The metal oxide layer has an average thickness of at least 0.01 ?m. A continuous porous lithium storage layer is deposited onto the metal oxide layer by a CVD process. The anode is thermally treated after deposition of the continuous porous lithium storage layer is complete and prior to battery assembly. The thermal treatment includes heating the anode to a temperature in a range of 100° C. to 600° C. for a time period in a range of 0.1 min to 120 min. The anode may be incorporated into a lithium ion battery along with a cathode. The cathode may include sulfur or selenium and the anode may be prelithiated.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: September 6, 2022
    Assignee: Graphenix Development, Inc.
    Inventors: John C. Brewer, Kevin Tanzil, Paul D. Garman, Robert G. Anstey, Isaac N. Lund, Kyle P. Povlock
  • Publication number: 20220223841
    Abstract: An anode for an energy storage device is provided that includes a current collector having an electrically conductive layer, a plurality of lithium storage filamentary structures in contact with the electrically conductive layer. For each lithium storage filamentary structure of the plurality of lithium storage filamentary structures, there is a first supplemental layer overlaying at least a portion of the respective filamentary structure, the first supplemental layer including silicon nitride or a first metal compound. There is further a second supplemental layer overlaying at least a portion of the first supplemental layer, the second supplemental layer having a composition different from the first supplemental layer and comprising silicon nitride or a second metal compound.
    Type: Application
    Filed: January 12, 2022
    Publication date: July 14, 2022
    Applicant: Graphenix Development, Inc.
    Inventors: Robert G. Anstey, William P. McKenna, John M. Pochan, Bernard Philip Gridley, John C. Brewer, Paul D. Garman, Kevin Tanzil
  • Publication number: 20220181639
    Abstract: An anode for a lithium-based energy storage device such as a lithium-ion battery is disclosed. The anode includes an electrically conductive current collector comprising an electrically conductive layer and a transition metal oxide layer overlaying the electrically conductive layer. The anode may include a continuous porous lithium storage layer provided over the transition metal oxide layer. The continuous porous lithium storage layer may include at least 40 atomic % silicon. A method of making the anode may include providing an electrically conductive current collector having an electrically conductive layer and a transition metal oxide layer provided over the electrically conductive layer. The transition metal oxide layer may have an average thickness of at least 0.05 ?m. A continuous porous lithium storage layer is deposited over the transition metal oxide layer by PECVD.
    Type: Application
    Filed: February 22, 2022
    Publication date: June 9, 2022
    Applicant: Graphenix Development, Inc.
    Inventors: John C. Brewer, Kevin Tanzil, Paul D. Garman, Robert G. Anstey
  • Patent number: 11283079
    Abstract: An anode for a lithium-based energy storage device such as a lithium-ion battery is disclosed. The anode includes an electrically conductive current collector comprising an electrically conductive layer and a transition metal oxide layer overlaying the electrically conductive layer. The anode may include a continuous porous lithium storage layer provided over the transition metal oxide layer. The continuous porous lithium storage layer may include at least 40 atomic % silicon. A method of making the anode may include providing an electrically conductive current collector having an electrically conductive layer and a transition metal oxide layer provided over the electrically conductive layer. The transition metal oxide layer may have an average thickness of at least 0.05 ?m. A continuous porous lithium storage layer is deposited over the transition metal oxide layer by PECVD.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: March 22, 2022
    Assignee: Graphenix Development, Inc.
    Inventors: John C. Brewer, Kevin Tanzil, Paul D. Garman, Robert G. Anstey
  • Publication number: 20210242456
    Abstract: An anode for an energy storage device includes a current collector having a metal layer; and a metal oxide layer provided in a first pattern overlaying the metal layer. The anode further includes a patterned lithium storage structure having a continuous porous lithium storage layer selectively overlaying at least a portion of the first pattern of metal oxide. A method of making an anode for use in an energy storage device includes providing a current collector having a metal layer and a metal oxide layer provided in a first pattern overlaying the metal layer. A continuous porous lithium storage layer is selectively formed by chemical vapor deposition by exposing the current collector to at least one lithium storage material precursor gas.
    Type: Application
    Filed: April 22, 2021
    Publication date: August 5, 2021
    Applicant: Graphenix Development, Inc.
    Inventors: Terrence R. O'Toole, John C. Brewer, Paul D. Garman, Robert G. Anstey
  • Patent number: 11024842
    Abstract: An anode for an energy storage device includes a current collector having a metal layer; and a metal oxide layer provided in a first pattern overlaying the metal layer. The anode further includes a patterned lithium storage structure having a continuous porous lithium storage layer selectively overlaying at least a portion of the first pattern of metal oxide. A method of making an anode for use in an energy storage device includes providing a current collector having a metal layer and a metal oxide layer provided in a first pattern overlaying the metal layer. A continuous porous lithium storage layer is selectively formed by chemical vapor deposition by exposing the current collector to at least one lithium storage material precursor gas.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: June 1, 2021
    Assignee: Graphenix Development, Inc.
    Inventors: Terrence R. O'Toole, John C. Brewer, Paul D. Garman, Robert G. Anstey
  • Publication number: 20210119217
    Abstract: An anode for a lithium-based energy storage device such as a lithium-ion battery is disclosed. The anode includes an electrically conductive current collector comprising an electrically conductive layer and a transition metal oxide layer overlaying the electrically conductive layer. The anode may include a continuous porous lithium storage layer provided over the transition metal oxide layer. The continuous porous lithium storage layer may include at least 40 atomic % silicon. A method of making the anode may include providing an electrically conductive current collector having an electrically conductive layer and a transition metal oxide layer provided over the electrically conductive layer. The transition metal oxide layer may have an average thickness of at least 0.05 ?m. A continuous porous lithium storage layer is deposited over the transition metal oxide layer by PECVD.
    Type: Application
    Filed: December 2, 2020
    Publication date: April 22, 2021
    Applicant: Graphenix Development, Inc.
    Inventors: John C. Brewer, Kevin Tanzil, Paul D. Garman, Robert G. Anstey
  • Publication number: 20210066702
    Abstract: A method of making an anode for use in an energy storage device is provided. The method includes providing a current collector having an electrically conductive substrate and a surface layer overlaying a first side of the electrically conductive substrate. A second side of the electrically conductive substrate includes a filament growth catalyst, wherein the second side is opposite the first. The method further includes depositing a lithium storage layer onto the surface layer using a first CVD process forming a plurality of lithium storage filamentary structures on the second side of the electrically conductive substrate using second CVD process.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 4, 2021
    Applicant: Graphenix Development, Inc.
    Inventors: Terrence R. O'Toole, John C. Brewer
  • Publication number: 20210057757
    Abstract: An anode for an energy storage device includes a current collector. The current collector includes: i) an electrically conductive substrate including a first electrically conductive material; ii) a plurality of electrically conductive structures in electrical communication with the electrically conductive substrate, wherein each electrically conductive structure includes a second electrically conductive material; and iii) a metal oxide coating. The metal oxide coating includes one or both of: a) a first metal oxide material in contact with the electrically conductive substrate; or b) a second metal oxide material in contact with the electrically conductive structures; or both (a) and (b). The anode further includes lithium storage coating overlaying the metal oxide coating, the lithium storage layer including a total content of silicon, germanium, or a combination thereof, of at least 40 atomic %. The electrically conductive structures are at least partially embedded within the lithium storage coating.
    Type: Application
    Filed: August 19, 2020
    Publication date: February 25, 2021
    Applicant: Graphenix Development, Inc.
    Inventors: John C. Brewer, Terrence R. O'Toole
  • Publication number: 20210057755
    Abstract: An anode for a lithium-based energy storage device such as a lithium-ion battery is disclosed. The anode includes a current collector having an electrically conductive layer and a surface layer overlaying the electrically conductive layer. A lithium storage layer is overlaying the surface layer and the surface layer includes a metal chalcogenide having at least one of sulfur or selenium. The metal chalcogenide may include a metal sulfide, a metal polysulfide, a metal selenide, a metal polyselenide, or a combination thereof. The metal chalcogenide may include a copper sulfide or a copper polysulfide. The lithium storage may include a total content of silicon, germanium, or a combination thereof of at least 40 atomic %. The lithium storage layer may be a continuous porous lithium storage layer having an average density from about 1.1 g/cm3 to about 2.25 g/cm3 and comprises at least 85 atomic % amorphous silicon.
    Type: Application
    Filed: August 20, 2020
    Publication date: February 25, 2021
    Applicant: Graphenix Development, Inc.
    Inventors: John C. Brewer, Paul D. Garman, Kevin Tanzil
  • Publication number: 20210057733
    Abstract: An anode for an energy storage device such as a lithium-ion energy storage device is disclosed. The anode includes a current collector having a metal oxide layer, a first lithium storage layer overlaying the current collector, a first intermediate layer overlaying at least a portion of the first lithium storage layer, and a second lithium storage layer overlaying the first intermediate layer. The first lithium storage layer is a continuous porous lithium storage layer having a total content of silicon, germanium, or a combination thereof, of at least 40 atomic %.
    Type: Application
    Filed: August 19, 2020
    Publication date: February 25, 2021
    Applicant: Graphenix Development, Inc.,
    Inventors: John C. Brewer, Paul D. Garman, Bernard Philip Gridley, Robert G. Anstey, Kevin Tanzil
  • Publication number: 20210050593
    Abstract: An anode for an energy storage device includes a current collector having a metal oxide layer. A continuous porous lithium storage layer overlays the metal oxide layer, and a first supplemental layer overlays the continuous porous lithium storage layer. The first supplemental layer includes silicon nitride, silicon dioxide, or silicon oxynitride. The anode may further include a second supplemental layer overlaying the first supplemental layer. The second supplemental layer has a composition different from the first supplemental layer and may include silicon dioxide, silicon nitride, silicon oxynitride, or a metal compound.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 18, 2021
    Applicant: Graphenix Development, Inc.
    Inventors: John C. Brewer, Kevin Tanzil, Paul D. Garman, Robert G. Anstey
  • Publication number: 20210050584
    Abstract: A method of making an anode for use in an energy storage device includes providing a current collector having an electrically conductive layer and a metal oxide layer overlaying over the electrically conductive layer. The metal oxide layer has an average thickness of at least 0.01 ?m. A continuous porous lithium storage layer is deposited onto the metal oxide layer by a CVD process. The anode is thermally treated after deposition of the continuous porous lithium storage layer is complete and prior to battery assembly. The thermal treatment includes heating the anode to a temperature in a range of 100° C. to 600° C. for a time period in a range of 0.1 min to 120 min. The anode may be incorporated into a lithium ion battery along with a cathode. The cathode may include sulfur or selenium and the anode may be prelithiated.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 18, 2021
    Applicant: Graphenix Development, Inc.
    Inventors: John C. Brewer, Kevin Tanzil, Paul D. Garman, Robert G. Anstey, Isaac N. Lund, Kyle P. Povlock
  • Publication number: 20210050591
    Abstract: A method of making a prelithiated anode for use in a lithium-ion battery includes providing a current collector having an electrically conductive layer and a metal oxide layer overlaying the electrically conductive layer. The metal oxide layer has an average thickness of at least 0.01 ?m. A continuous porous lithium storage layer is deposited onto the metal oxide layer by a CVD process. Lithium is incorporated into the continuous porous lithium storage layer to form a lithiated storage layer prior to a first electrochemical cycle when the anode is assembled into the battery. The anode may be incorporated into a lithium ion battery along with a cathode. The cathode may include sulfur or selenium and the anode may be prelithiated.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 18, 2021
    Applicant: Graphenix Development, Inc.
    Inventors: John C. Brewer, Kevin Tanzil, Paul D. Garman, Robert G. Anstey, Isaac N. Lund
  • Patent number: 10910653
    Abstract: An anode for a lithium-based energy storage device such as a lithium-ion battery is disclosed. The anode includes an electrically conductive current collector comprising a metal oxide layer and a continuous porous lithium storage layer provided over the metal oxide layer. The continuous porous lithium storage layer includes at least 40 atomic % silicon, germanium or a combination thereof. A method of making the anode includes providing an electrically conductive current collector having an electrically conductive layer and a metal oxide layer provided over the electrically conductive layer. The metal oxide layer may have an average thickness of at least 0.05 ?m. A continuous porous lithium storage layer is deposited over the metal oxide layer by PECVD.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: February 2, 2021
    Assignee: Graphenix Development, Inc.
    Inventors: John C. Brewer, Kevin Tanzil, Paul D. Garman, Robert G. Anstey
  • Publication number: 20200411851
    Abstract: An anode for an energy storage device includes a current collector having a metal layer; and a metal oxide layer provided in a first pattern overlaying the metal layer. The anode further includes a patterned lithium storage structure having a continuous porous lithium storage layer selectively overlaying at least a portion of the first pattern of metal oxide. A method of making an anode for use in an energy storage device includes providing a current collector having a metal layer and a metal oxide layer provided in a first pattern overlaying the metal layer. A continuous porous lithium storage layer is selectively formed by chemical vapor deposition by exposing the current collector to at least one lithium storage material precursor gas.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 31, 2020
    Applicant: Graphenix Development, Inc.
    Inventors: Terrence R. O'Toole, John C. Brewer, Paul D. Garman, Robert G. Anstey
  • Patent number: 9828484
    Abstract: The present invention is particularly directed to graphenic dispersion and slurry compositions and the production and uses thereof, where these compositions exhibit one or more of the hallmark strength, thermal or electrical properties of “pure” graphene while at the same time being optimized in terms of solubility or other properties necessary for compatibility with one or more end processes. In specific embodiments, a composition of matter includes a graphenic mixture and at least one species of polymerized product of benzyl alcohol, and a method of making such composition of matter comprises sonicating the graphenic mixture in heated benzyl alcohol. In a further specific embodiment, a composition of matter is formed by sonicating a graphenic mixture in heated benzyl alcohol, wherein the resulting composition exhibits a binder functionality in the absence of exogenous binder.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: November 28, 2017
    Assignee: Graphenix Development, Inc.
    Inventors: John C. Brewer, Richard Allen Castle, Kevin Tanzil